
Is Requirements Engineering Inherently
Counterproductive?

Paul Ralph
Dept. of Computer Science

University of Auckland
Auckland, New Zealand
paul@paulralph.name

Rahul Mohanani
Dept. of Information Processing Science

University of Oulu
Oulu, Finland

rahul.mohanani@oulu.fi

Abstract—This paper explores the possibility that requirements
engineering is, in principle, detrimental to software project
success. Requirements engineering is conceptually divided into
two distinct processes: sensemaking (learning about the project
context) and problem structuring (specifying problems, goals,
requirements, constraints, etc.). An interdisciplinary literature
review revealed substantial evidence that while sensemaking
improves design performance, problem structuring reduces
design performance. Future research should therefore investigate
decoupling the sensemaking aspects of requirements engineering
from the problem structuring aspects.

Index Terms—Requirements Engineering, Sensemaking,
Problem Structuring, Domain Knowledge, Design.

I. INTRODUCTION

Many people believe that requirements engineering (RE)
should produce an unambiguous , consistent , complete ,
feasible , traceable and verifiable requirements

specification [1, p. 11]. While some eschew a comprehensive
system requirements specification in favor of user stories [2],
scenarios [3], use cases [4] or other documents, no one is
championing ambiguous , inconsistent , incomplete, and
confused requirements specifications. Rather, it appears

obvious that a clearer, more structured account of what is
needed or wanted will improve the likelihood of success.

But is this true? Or is it an example of oversimplifying and
over-rationalizing complex phenomena [5]? To investigate
this, we pose the following research question.

Research Question: Does any existing theoretical or
empirical research support the proposition that Requirements
Engineering is fundamentally detrimental to software
engineering success?

Here, software engineering success refers to the net impact
of a software project or product on its stakeholders over time
[6]. Requirements Engineering, in contrast, is more difficult to
define (see below).

We approach the research question by reviewing existing
empirical studies of problem solving, problem structuring,
creativity, goal understanding and sensemaking from cognitive
science, psychology, sociology, management and software
engineering (II). We then return to our research question and
recommend areas for future research (III).

II. LITERATURE REVIEW AND ANALYSIS

A) What do we mean by Requirements Engineering?
RE has been defined as the subfield of software

engineering pertaining to eliciting , modeling , analyzing ,
communicating , agreeing and evolving requirements [7].

The problem with this definition is that many projects appear
to proceed with no meaningful requirements [8] or little
agreement on goals and requirements [9]. Analysts, moreover,
do not elicit requirements because requirements are not
hiding preformed in the minds of project stakeholders.
Rather, analysts are usually faced with an ambiguous
problematic context, replete with conflicting perceptions,
viewpoints, values and goals [9]. RE thus includes at least two
related but distinct processes (Figure 1), as follows.
1. Sensemaking, which involves learning, understanding and

organizing beliefs about the context [10].
2. Problem structuring, which involves assigning socially

constructed constraints, parameters, options, states,
choices and other specifics to the context [11].

FIGURE 1. Initial Model of RE Effects

Problem structuring involves inventing goals, problems,
constraints and other structure elements [12]. Problem
structure does not exist in an objective reality waiting for
discovery; it is created by human actors [13].

Differentiating the two aims of RE forms the basis of our
inquiry and raises two new questions: How do domain
knowledge (developed through sensemaking) and task
structure (developed through problem structuring) affect
software engineering success?

2015 IEEE/ACM 5th International Workshop on the Twin Peaks of Requirements and Architecture

978-1-4673-7100-1/15 $31.00 © 2015 IEEE

DOI 10.1109/TwinPeaks.2015.12

20

B) Domain Knowledge
Domain knowledge comprises memory categories learned

from a specific environment and used to solve problems and
make decisions [14]. Domain experts can retrieve relevant
domain knowledge and strategies with minimal cognitive
effort and can exert greater cognitive control over their
performance [15]. Greater domain knowledge improves
problem comprehension [16] and working memory [17]. It
facilitates mental simulation, allowing designers to explore the
solution space without overlooking important concerns outside
the current level of detail and therefore iterate on initial
designs more effectively [18]. Domain knowledge is therefore
critical for cognitive tasks [19] including idea generation [20],
design [21] and problem solving [22], [23].

While most empirical studies appear to indicate that
domain knowledge and design performance are positively
related, higher domain knowledge can sometimes lead to
lower performance, for instance, by reducing divergent
thinking [24], encouraging more narrowly defined problems
[25] or promoting mental set fixation [15] leading to less
creative solutions. It can also impair judgment by interfering
with mental heuristics [26].

C) Task Structure
We often conceptualize problems on a spectrum from well-

structured to ill-structured. Well-structured problems are
constrained problems with [correct,] convergent solutions that
engage the application of a limited number of rules and
principles within well-defined parameters. Ill-structured
problems possess multiple solutions, solution paths, fewer
parameters which are less manipulable, and contain
uncertainty about which concepts, rules, and principles are
necessary for the solution or how they are organized and
which solution is best [27, p. 65].

Simon [28], [29] argues that despite the fact that most
design problems are ill-structured, problem-solving theory
that is based upon the solution of well-structured problems
should serve as the basis for all problem solving [30, p. 7].
Empirical evidence contradicts this prevalent view [30], [31].

Performance solving well-defined problems is unrelated to
performance solving ill-defined problems [32]. Solving well-
and ill-defined problems involves different psychological
processes [27], [33] and neurophysiological structures [34].
The associative engine and neural structures that support

imprecise, ambiguous, abstract, indeterminate representations
are lateralized in the right prefrontal cortex, while the
inference engine and neural structures that support precise,
unambiguous, determinant representations are lateralized in
the left prefrontal cortex [34, p. 1].

Moreover, myriad empirical studies have found that higher
task structure does not necessarily improve outcomes. For
example, nonspecific or open goals lead to more learning
[35]-[37] and increase unconscious assimilation of problem-
relevant information [38]. More abstract task framing leads to
more novel creations than more specific task framing [39].
Presenting conflicting objectives leads to more effective
solutions [40]. In summary, over-concentration on problem
definition does not lead to successful design outcomes [41, p.
439]. These findings all suggest a negative relationship
between task structure and design performance.

D)Mechanisms for Structure Impeding Design
How can clearer, more structured problems possibly impair

design? At least three mechanisms have been proposed:
1. Nonspecific goals lead to more learning because they

reduce cognitive load [35], [36] (since the problem solver
has fewer parameters to remember) or encourage
hypothesis testing [37].

2. Designers often fixate on early solution ideas [42],
existing solutions [43], [44] and bogus requirements [45].

3. Designers adopt different cognitive strategies for ill-
structured and well-structured problems. Designers
employ at least four cognitive strategies, which differ by
their degree of information gathering, solution generation
and use of prior knowledge [46]. Better designers appear
to gather a moderate amount of information and process it
quickly into their problem schema [35], [41], [46].

While the precise mechanism by which increasing task
structure decreases design performance remains unclear,
design expertise appears to moderate the relationship. Expert
designers disregard task structure [47] they treat all
problems as nonspecific and ill-structured, focusing on
solution generation rather than problem analysis [41], [48].

E) Proposed Model of RE Effects
To summarize, RE involves both making sense of an

ambiguous context and assigning structure to the context. RE
therefore increases both domain knowledge and task structure.
The balance of evidence suggests that while increased domain
knowledge improves design performance, increased task
structure degrades design performance (Figure 2).

The proposed model s implications are entangled with
common misunderstandings about design work. Unlike
designers in other fields, software developers sometimes
differentiate between design, a step between requirements and
implementation in an idealized systems lifecycle, and
development, the complete process of conceptualizing,
creating and maintain software intensive systems [49]. This
distinction is incommensurate with the vast body of empirical
research on how designers actually work [13], [48], [50].
Expert designers explore problematic contexts by generating
solution concepts [13], [51]. They intentionally maintain
ambiguity and continue problem framing throughout the
development process [52]. Problem framing and designing
solutions are one and the same process coevolution [49],
[51]. Lifecycle views of software development therefore
incorrectly categorize problem structuring with sensemaking
instead of with design. Consequently, structuring tasks are
incorrectly assigned to managers and analysts instead of
architects and developers. Requirements analysts cannot
structure problems for designers because problem structuring
is inextricably entangled with design [13]. This realization
motivates several recommendations, below.

III. CONCLUSION AND RECOMMENDATIONS

While much research has investigated particular methods,
tools and techniques for requirements engineering, this paper
questions whether RE is inherently counterproductive. It
divides RE into two related but distinct processes
(sensemaking and problem structuring), and reviews the

21

FIGURE 2. Dichotomous Effects of Requirements Engineering

literature on how each process affects outcomes. While higher
domain knowledge is mostly associated with higher design
performance and more success, more structured tasks often
lead to lower design performance and less success. This
suggests that the specifying, structuring aspects of RE are
counterproductive while the learning, sensemaking aspects of
RE are beneficial.

Practically speaking, our findings suggest the following
recommendations for requirements analysts, developers,
project managers and project clients.
1. Avoid over-structuring, oversimplifying and over-

rationalizing problem contexts.
2. Recognize, analyze and accept ambiguity and uncertainty

as unavoidable and even beneficial.
3. Expect problem structuring and high-level design to occur

simultaneously.
4. Assign problem structuring and high-level design to the

same individuals or teams.
These findings and recommendations should be considered

in light of two main limitations. Figure 2 is an illustration of
our thesis rather than a comprehensive theory of RE. It does
not include negotiation or agreement and shows only the
analyst s perspective. Furthermore, much of the reviewed
literature concerns non-software artifacts and may not
perfectly generalize to the software context. With these
limitations in mind, we recommend the following areas for
future research.
1. Decoupling sensemaking and problem structuring.
2. Techniques, tools and practices for representing,

analyzing and addressing ill-structured design tasks; cf.
[27], [53], [54].

3. Direct testing of the proposed Model of RE Effects within
software engineering contexts.

4. Instruments for measuring domain knowledge, task
structure and design performance in software engineering.

5. The relationship between problem structuring and law,
particularly accommodating ambiguity in software
contracts and public procurement.

6. The potential for specifically asking for creative solutions
to mitigate over-structuring; cf. [55].

In conclusion, poor design performance cannot be
overcome by proposing better problem structuring methods,

practices or representations. More structure is inherently
deleterious to design performance and software engineering
success. The solution is therefore less structure rather than a
better structuring method. Consequently, we call for more
research on decoupling the useful, sensemaking aspects of RE
from the counterproductive structuring aspects of RE.

REFERENCES

[1] ISO/IEC/IEEE Standard 29148:2011(E), Systems and software
engineering Life cycle processes Requirements engineering.

[2] M. Cohn, User Stories Applied. Addison Wesley, 2004.
[3] J. M. Carroll, Five reasons for scenario-based design,

Interacting with Computers, vol. 13, no. 1, pp. 43 60, 2000.
[4] A. Cockburn, Writing Effective Use Cases. Addison-Wesley,

2000.
[5] M. W. Lewis, Exploring Paradox: Toward a More

Comprehensive Guide, The Academy of Management Review,
vol. 25, no. 4, pp. 760 776, 2000.

[6] P. Ralph and P. Kelly, The Dimensions of Software
Engineering Success, Proceedings of the 2014 International
Conference on Software Engineering, Hyderabad, India: ACM,
2014.

[7] B. Nuseibeh and S. Easterbrook, Requirements engineering: a
roadmap, Proceedings of the Conference on The Future of
Software Engineering, 2000, pp. 35 46.

[8] P. Ralph, The Illusion of Requirements in Software
Development, Requirements Engineering, vol. 18, no. 3, pp.
293 296, 2013.

[9] P. Checkland, Systems Thinking, Systems Practice. Chichester:
Wiley, 1999.

[10] K. E. Weick, K. M. Sutcliffe, and D. Obstfeld, Organizing and
the Process of Sensemaking, Organization Science, vol. 16, no.
4, pp. 409 421, 2005.

[11] K. Dorst, Design Problems and Design Paradoxes, Design
Issues, vol. 22, no. 3, pp. 4 17, 2006.

[12] L. Nguyen and G. Shanks, A framework for understanding
creativity in requirements engineering, Information and
Software Technology, vol. 51, no. 3, pp. 655 662, 2009.

[13] D. A. Sch n, The reflective practitioner: how professionals
think in action. USA: Basic Books, 1983.

[14] C. M. Ford, A Theory of Individual Creative Action in Multiple
Social Domains, The Academy of Management Review, vol. 21,
no. 4, pp. 1112 1142, Oct. 1996.

22

[15] M. Chi, Two approaches to the study of experts'
characteristics, in The Cambridge Handbook of Expertise and
Expert Performance, Cambridge University Press, 2006, pp. 21
30.

[16] D. H. Jonassen, Toward a design theory of problem solving,
Educational Technology Research and Development, vol. 48,
no. 4, pp. 63 85, Dec. 2000.

[17] D. Hambrick, Effects of Domain Knowledge, Working
Memory Capacity, and Age on Cognitive Performance: An
Investigation of the Knowledge-Is-Power Hypothesis,
Cognitive Psychology, vol. 44, no. 4, pp. 339 387, Jun. 2002.

[18] B. Adelson and E. Soloway, The Role of Domain Experience in
Software Design, IEEE Transaction on Software Engineering,
vol. 11, no. 11, pp. 1351 1360, Nov. 1985.

[19] J. F. Voss, T. R. Greene, T. A. Post, and B. C. Penner, Problem-
Solving Skill in the Social Sciences, Psychology of Learning
and Motivation, vol. 17, pp. 165 213, 1983.

[20] E. F. Rietzschel, B. A. Nijstad, and W. Stroebe, Relative
accessibility of domain knowledge and creativity: The effects of
knowledge activation on the quantity and originality of
generated ideas, Journal of Experimental Social Psychology,
vol. 43, no. 6, pp. 933 946, Nov. 2007.

[21] V. Popovic, Expertise development in product design
strategic and domain-specific knowledge connections, Design
Studies, vol. 25, no. 5, pp. 527 545, Sep. 2004.

[22] J. M. Schraagen, How Experts Solve a Novel Problem in
Experimental Design, Cognitive Science, vol. 17, no. 2, pp.
285 309, Apr. 1993.

[23] J. McDermott, Domain knowledge and the design process,
Design Studies, vol. 3, no. 1, pp. 31 36, Jan. 1982.

[24] A. M. Kilgour, Improving the creative process: Analysis of the
effects of divergent thinking techniques and domain specific
knowledge on creativity, International Journal of Business and
Society, vol. 7, no. 2, pp. 79 107, 2006.

[25] J. Wiley, Expertise as mental set: the effects of domain
knowledge in creative problem solving., Mem Cognit, vol. 26,
no. 4, pp. 716 730, Jul. 1998.

[26] G. Gigerenzer, How to Make Cognitive Illusions Disappear:
Beyond Heuristics and Biases , European Review of Social
Psychology, vol. 2, pp. 83 115, 1991.

[27] D. H. Jonassen, Instructional design models for well-structured
and III-structured problem-solving learning outcomes,
Educational Technology Research and Development, vol. 45,
no. 1, pp. 65 94, 1997.

[28] A. Newell and H. Simon, Human Problem Solving. Prentice-
Hall, Inc., 1972.

[29] H. A. Simon, The Sciences of the Artificial, 3rd ed. Cambridge,
MA, USA: MIT Press, 1996.

[30] K. Dorst, Design Problems and Design Paradoxes, Design
Issues, vol. 22, no. 3, pp. 4 17, 2006.

[31] P. Ralph, Introducing an Empirical Model of Design, in
Proceedings of The 6th Mediterranean Conference on
Information Systems, Limassol, Cyprus: AIS, 2011.

[32] G. Schraw, M. E. Dunkle, and L. D. Bendixen, Cognitive
processes in well-defined and ill-defined problem solving,
Applied Cog. Psych., vol. 9, no. 6, pp. 523 538, Dec. 1995.

[33] T. Love, Philosophy of Design: A Meta-theoretical Structure
for Design Theory, Design Studies, vol. 21, pp. 293 313, 2000.

[34] Goel, V. Creative brains: designing in the real world." Frontiers
in Human Neuroscience, vol. 8, pp. 1 14, 2014. V.

[35] J. Wirth, J. K nsting, and D. Leutner, The impact of goal
specificity and goal type on learning outcome and cognitive
load, Computers in Human Behavior, pp. 1 7, Jan. 2009.

[36] R. Vollmeyer and B. D. Burns, Goal Specificity and Learning
with a Hypermedia Program, Experimental Psychology, vol. 49,
no. 2, pp. 98 108, Apr. 2002.

[37] B. D. Burns and R. Vollmeyer, Goal specificity effects on
hypothesis testing in problem solving, Quarterly Journal of
Experimental Psychology, vol. 55, no. 1, pp. 241 261, Feb.
2002.

[38] J. Moss, K. Kotovsky, and J. Cagan, The influence of open
goals on the acquisition of problem-relevant information,
Journal of Experimental Psychology: Learning, Memory, and
Cognition, vol. 33, no. 5, pp. 876 891, 2007.

[39] T. Ward, M. Patterson, and C. Sifonis, The Role of Specificity
and Abstraction in Creative Idea Generation, Creativity
Research Journal, vol. 16, no. 1, pp. 1 9, 2004.

[40] A. B. Butler, L. L. Scherer, and R. Reiter-Palmon, Effects of
Solution Elicitation Aids and Need for Cognition on the
Generation of Solutions to Ill-Structured Problems, Creativity
Research Journal, vol. 15, no. 2, pp. 235 244, 2003.

[41] N. Cross, Expertise in design: an overview, Design Studies,
vol. 25, no. 5, pp. 427 441, Sep. 2004.

[42] R. Guindon, Knowledge exploited by experts during software
system design, International Journal of Man-Machine Studies,
vol. 33, no. 3, pp. 279 304, Sep. 1990.

[43] D. G. Jansson and S. M. Smith, Design fixation, Design
Studies, vol. 12, no. 1, pp. 3 11, 1991.

[44] A. T. Purcell and J. S. Gero, Design and other types of
fixation, Design Studies, vol. 17, no. 4, pp. 363 383, 1996.

[45] R. Mohanani, P. Ralph, and B. Shreeve, Requirements
Fixation, in Proceedings of the 2014 International Conference
on Software Engineering, Hyderabad, India: ACM, 2014.

[46] C. Kruger and N. Cross, Solution driven versus problem driven
design: strategies and outcomes, Design Studies, vol. 27, no. 5,
pp. 527 548, Sep. 2006.

[47] . Akin, Expertise of the architect, in Expert Systems for
Engineering Design, M. Rychener, Ed. New York: Carnegie
Mellon University, Engineering Design Research Center, 1988,
pp. 171 196.

[48] N. Cross, K. Dorst, and N. Roozenburg, Research in design
thinking. Delft University Press, 1992.

[49] P. Ralph, The Sensemaking-Coevolution-Implementation
Theory of Software Design, Science of Computer
Programming, in press.

[50] F. P. Brooks, The Design of Design: Essays from a Computer
Scientist. Addison-Wesley Professional, 2010.

[51] K. Dorst and N. Cross, Creativity in the design process: Co-
evolution of problem-solution, Design Studies, vol. 22, pp.
425 437, Sep. 2001.

[52] B. Lawson, Design in Mind. Architectual Press, 1994.
[53] M. Basadur, S. J. Ellspermann, and G. W. Evans, A new

methodology for formulating ill-structured problems, Omega,
vol. 22, no. 6, pp. 627 645, 1994.

[54] M. D. Mumford, R. Reiter-Palmon, and M. R. Redmond,
Problem construction and cognition: Applying problem
representations in ill-defined domains. Ablex Publishing, 1994.

[55] C. E. Shalley, Effects of productivity goals, creativity goals,
and personal discretion on individual creativity, Journal of
Applied Psychology, 1991.

23

