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Abstract—This paper explores the possibility that requirements 
engineering is, in principle, detrimental to software project 
success. Requirements engineering is conceptually divided into 
two distinct processes: sensemaking (learning about the project 
context) and problem structuring (specifying problems, goals, 
requirements, constraints, etc.). An interdisciplinary literature 
review revealed substantial evidence that while sensemaking 
improves design performance, problem structuring reduces 
design performance. Future research should therefore investigate 
decoupling the sensemaking aspects of requirements engineering 
from the problem structuring aspects. 

Index Terms—Requirements Engineering, Sensemaking, 
Problem Structuring, Domain Knowledge,  Design. 

I. INTRODUCTION 

Many people believe that requirements engineering (RE) 
should produce an unambiguous , consistent , complete , 
feasible , traceable  and verifiable  requirements 

specification [1, p. 11]. While some eschew a comprehensive 
system requirements specification in favor of user stories [2], 
scenarios [3], use cases [4] or other documents, no one is
championing ambiguous , inconsistent , incomplete,  and 
confused requirements specifications. Rather, it appears 

obvious that a clearer, more structured account of what is
needed or wanted will improve the likelihood of success.  

But is this true? Or is it an example of oversimplifying and 
over-rationalizing complex phenomena [5]? To investigate 
this, we pose the following research question. 

Research Question: Does any existing theoretical or
empirical research support the proposition that Requirements 
Engineering is fundamentally detrimental to software 
engineering success? 

Here, software engineering success refers to the net impact 
of a software project or product on its stakeholders over time 
[6]. Requirements Engineering, in contrast, is more difficult to
define (see below). 

We approach the research question by reviewing existing 
empirical studies of problem solving, problem structuring, 
creativity, goal understanding and sensemaking from cognitive 
science, psychology, sociology, management and software 
engineering ( II). We then return to our research question and 
recommend areas for future research ( III).

II. LITERATURE REVIEW AND ANALYSIS

A) What do we mean by Requirements Engineering? 
RE has been defined as the subfield of software 

engineering pertaining to eliciting , modeling , analyzing , 
communicating , agreeing  and evolving  requirements [7]. 

The problem with this definition is that many projects appear 
to proceed with no meaningful requirements [8] or little
agreement on goals and requirements [9]. Analysts, moreover, 
do not elicit  requirements because requirements are not 
hiding  preformed in the minds of project stakeholders. 
Rather, analysts are usually faced with an ambiguous 
problematic context, replete with conflicting perceptions, 
viewpoints, values and goals [9]. RE thus includes at least two 
related but distinct processes (Figure 1), as follows.  
1. Sensemaking, which involves learning, understanding and 

organizing beliefs about the context [10]. 
2. Problem structuring, which involves assigning socially 

constructed constraints, parameters, options, states, 
choices and other specifics to the context [11].  

FIGURE 1. Initial Model of RE Effects 

Problem structuring involves inventing goals, problems, 
constraints and other structure elements [12]. Problem 
structure does not exist in an objective reality waiting for 
discovery; it is created by human actors [13].  

Differentiating the two aims of RE forms the basis of our 
inquiry and raises two new questions: How do domain 
knowledge (developed through sensemaking) and task 
structure (developed through problem structuring) affect 
software engineering success?  
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B) Domain Knowledge 
Domain knowledge comprises memory categories learned 

from a specific environment and used to solve problems and 
make decisions [14]. Domain experts can retrieve relevant 
domain knowledge and strategies with minimal cognitive 
effort and can exert greater cognitive control over their 
performance [15]. Greater domain knowledge improves 
problem comprehension [16] and working memory [17]. It
facilitates mental simulation, allowing designers to explore the 
solution space without overlooking important concerns outside 
the current level of detail and therefore iterate on initial 
designs more effectively [18]. Domain knowledge is therefore 
critical for cognitive tasks [19] including idea generation [20], 
design [21] and problem solving [22], [23]. 

While most empirical studies appear to indicate that 
domain knowledge and design performance are positively 
related, higher domain knowledge can sometimes lead to
lower performance, for instance, by reducing divergent 
thinking [24], encouraging more narrowly defined problems 
[25] or promoting mental set fixation [15] leading to less 
creative solutions. It can also impair judgment by interfering 
with mental heuristics [26].  

C) Task Structure 
We often conceptualize problems on a spectrum from well-

structured to ill-structured. Well-structured problems are 
constrained problems with [correct,] convergent solutions that 
engage the application of a limited number of rules and 
principles within well-defined parameters. Ill-structured 
problems possess multiple solutions, solution paths, fewer 
parameters which are less manipulable, and contain 
uncertainty about which concepts, rules, and principles are 
necessary for the solution or how they are organized and 
which solution is best  [27, p. 65]. 

Simon [28], [29] argues that despite the fact that most 
design problems are ill-structured, problem-solving theory 
that is based upon the solution of well-structured problems 
should serve as the basis for all problem solving  [30, p. 7]. 
Empirical evidence contradicts this prevalent view [30], [31]. 

Performance solving well-defined problems is unrelated to
performance solving ill-defined problems [32]. Solving well- 
and ill-defined problems involves different psychological 
processes [27], [33] and neurophysiological structures [34]. 
The associative engine and neural structures that support 

imprecise, ambiguous, abstract, indeterminate representations 
are lateralized in the right prefrontal cortex, while the 
inference engine and neural structures that support precise, 
unambiguous, determinant representations are lateralized in
the left prefrontal cortex  [34, p. 1]. 

Moreover, myriad empirical studies have found that higher 
task structure does not necessarily improve outcomes. For 
example, nonspecific or open  goals lead to more learning 
[35]-[37] and increase unconscious assimilation of problem-
relevant information [38]. More abstract task framing leads to
more novel creations than more specific task framing [39]. 
Presenting conflicting objectives leads to more effective 
solutions [40]. In summary, over-concentration on problem 
definition does not lead to successful design outcomes  [41, p.
439]. These findings all suggest a negative relationship 
between task structure and design performance. 

D)Mechanisms for Structure Impeding Design 
How can clearer, more structured problems possibly impair 

design? At least three mechanisms have been proposed: 
1. Nonspecific goals lead to more learning because they 

reduce cognitive load [35], [36] (since the problem solver 
has fewer parameters to remember) or encourage 
hypothesis testing [37]. 

2. Designers often fixate on early solution ideas [42], 
existing solutions [43], [44] and bogus requirements [45]. 

3. Designers adopt different cognitive strategies for ill-
structured and well-structured problems. Designers 
employ at least four cognitive strategies, which differ by
their degree of information gathering, solution generation 
and use of prior knowledge [46]. Better designers appear 
to gather a moderate amount of information and process it
quickly into their problem schema [35], [41], [46]. 

While the precise mechanism by which increasing task 
structure decreases design performance remains unclear, 
design expertise appears to moderate the relationship. Expert 
designers disregard task structure [47]  they treat all 
problems as nonspecific and ill-structured, focusing on
solution generation rather than problem analysis [41], [48].  

E) Proposed Model of RE Effects 
To summarize, RE involves both making sense of an

ambiguous context and assigning structure to the context. RE
therefore increases both domain knowledge and task structure. 
The balance of evidence suggests that while increased domain 
knowledge improves design performance, increased task 
structure degrades design performance (Figure 2).

The proposed model s implications are entangled with 
common misunderstandings about design work. Unlike 
designers in other fields, software developers sometimes 
differentiate between design, a step between requirements and 
implementation in an idealized systems lifecycle, and 
development, the complete process of conceptualizing, 
creating and maintain software intensive systems [49]. This 
distinction is incommensurate with the vast body of empirical 
research on how designers actually work [13], [48], [50]. 
Expert designers explore problematic contexts by generating 
solution concepts [13], [51]. They intentionally maintain 
ambiguity and continue problem framing throughout the 
development process [52]. Problem framing and designing 
solutions are one and the same process  coevolution [49], 
[51]. Lifecycle views of software development therefore 
incorrectly categorize problem structuring with sensemaking 
instead of with design. Consequently, structuring tasks are 
incorrectly assigned to managers and analysts instead of
architects and developers. Requirements analysts cannot 
structure problems for designers because problem structuring 
is inextricably entangled with design [13]. This realization 
motivates several recommendations, below.  

III. CONCLUSION AND RECOMMENDATIONS

While much research has investigated particular methods, 
tools and techniques for requirements engineering, this paper 
questions whether RE is inherently counterproductive. It
divides RE into two related but distinct processes 
(sensemaking and problem structuring), and reviews the
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FIGURE 2. Dichotomous Effects of Requirements Engineering 

literature on how each process affects outcomes. While higher 
domain knowledge is mostly associated with higher design 
performance and more success, more structured tasks often 
lead to lower design performance and less success. This 
suggests that the specifying, structuring aspects of RE are 
counterproductive while the learning, sensemaking aspects of
RE are beneficial.  

Practically speaking, our findings suggest the following 
recommendations for requirements analysts, developers, 
project managers and project clients. 
1. Avoid over-structuring, oversimplifying and over-

rationalizing problem contexts. 
2. Recognize, analyze and accept ambiguity and uncertainty 

as unavoidable and even beneficial. 
3. Expect problem structuring and high-level design to occur 

simultaneously. 
4. Assign problem structuring and high-level design to the 

same individuals or teams.  
These findings and recommendations should be considered 

in light of two main limitations. Figure 2 is an illustration of
our thesis rather than a comprehensive theory of RE. It does 
not include negotiation or agreement and shows only the 
analyst s perspective. Furthermore, much of the reviewed 
literature concerns non-software artifacts and may not
perfectly generalize to the software context. With these 
limitations in mind, we recommend the following areas for 
future research. 
1. Decoupling sensemaking and problem structuring. 
2. Techniques, tools and practices for representing, 

analyzing and addressing ill-structured design tasks; cf. 
[27], [53], [54]. 

3. Direct testing of the proposed Model of RE Effects within 
software engineering contexts. 

4. Instruments for measuring domain knowledge, task 
structure and design performance in software engineering. 

5. The relationship between problem structuring and law, 
particularly accommodating ambiguity in software 
contracts and public procurement. 

6. The potential for specifically asking for creative solutions 
to mitigate over-structuring; cf. [55].  

In conclusion, poor design performance cannot be
overcome by proposing better problem structuring methods, 

practices or representations. More structure is inherently 
deleterious to design performance and software engineering 
success. The solution is therefore less structure rather than a 
better structuring method. Consequently, we call for more 
research on decoupling the useful, sensemaking aspects of RE
from the counterproductive structuring aspects of RE. 
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