
VIEWPOINTS

The illusion of requirements in software development

Paul Ralph

Received: 8 July 2012 / Accepted: 28 July 2012

� Springer-Verlag London Limited 2012

Abstract This viewpoint explores the possibility that

many software development projects may have no useful

requirements. Specifically, for problems (e.g., knowledge

worker burnout) with two completely different solutions

(e.g., better tool support or hire more employees), an

analyst may state a goal (e.g., decrease work hours) but

more specific desiderata are contingent on the chosen

solution. Furthermore, without fully exploring the design

space, the designer cannot be sure whether there exists

another approach, which would achieve the goal without

any commonality with known approaches. In these situa-

tions of sparse requirements, analysts may misrepresent

design decisions as requirements, creating an illusion of

requirements in software development.

Keywords Requirement � Goal � Design � Fundamentals �
Philosophy � Ontology � Epistemology

1 Introduction

It is widely accepted that understanding system require-

ments is important for software development project suc-

cess [1, 2]. Put another way, it is widely acknowledged that

failing to understand requirements is related to project

failure [3, 4]. The idea that software artifacts generally

have a set of discoverable, documentable requirements is

entrenched in industry standards [5], development pro-

cesses [2] and educational curricula [6, 7]. More broadly,

requirements are a fundamental component of the Rational

Model of Design [8–10], the dominant view of how prac-

titioners approach developing software and information

systems. However, utilizing good requirements practices

may not be a necessary or sufficient condition for project

success [11, 12].

The assumption that software projects have discover-

able, documentable requirements has motivated diverse

literature on requirements engineering (RE), the process of

identifying, analyzing, modeling, verifying and managing

requirements. Major contributions include RE approaches

(e.g., goal-oriented RE [13], user-centered RE [14]) and

requirement types (e.g., non-functional requirements [15],

early requirements [16]).

However, at least three software development projects

that I have observed or participated in have produced not a

single, meaningful requirement. Although they produced

statements labeled as requirements, closer inspection

revealed that they were something else—goals, design

decisions, to-do- or wish-list items. Therefore, the purpose

of this viewpoint is to explore the possibility of software

projects with few or illusory requirements.

2 Some explicit assumptions

Different authors have defined ‘‘requirement’’ in different

ways, alternatively as ‘‘a structural or behavioral property

that a design object must possess’’ [17, p. 108], ‘‘a state-

ment that identifies a capability or function that is needed

by a system in order to satisfy its customer’s needs’’ ([18],

p. 205) and ‘‘a property which must be exhibited in order to

solve some problem in the real world’’ ([19], sec. 1.1).

Requirements are often differentiated from goals

and design decisions. ‘‘A goal is an objective the sys-

tem under consideration should achieve’’ [13, p. 2].

P. Ralph (&)

Department of Management Science, Lancaster University,

Lancaster LA1 4YX, UK

e-mail: paul@paulralph.name

123

Requirements Eng

DOI 10.1007/s00766-012-0161-4



Where ‘‘goals describe the desired impacts of a design

object on its environment’’ [17, p. 110], ‘‘requirements are

usually understood as stating what a system is supposed to

do, as opposed to how it should do it’’ ([20], p. 226).

Similarly, Roman argued that ‘‘requirements specifications

state the desired functional and performance characteristics

of some component independent of any actual realization’’

([21], p. 14). Likewise, IEEE Standard 830-1998 states that

‘‘a requirement specifies an externally visible function or

attribute of a system [while] a design describes a particular

subcomponent of a system and/or its interfaces with other

subcomponents’’ [5, p. 9]. Understanding the relationships

between goals, requirements and design decisions is the

essence of the requirements traceability problem (cf. [22, 23]).

These varying definitions clarify the need for more

explicit ontological assumptions underlying RE. For the

purposes of this paper, I assume that a software develop-

ment project produces an artifact called the design object

having properties called features. Project participants or

stakeholders may assign to the design object one or more

goals—optative statements describing a change in the

environment that the design object is desired to produce. A

requirement is a feature of a design object that is necessary

to achieve a goal. (While this is an unconventional way of

defining requirement, it significantly simplifies explaining

the two challenges advanced below, which do not hinge on

this particular definition.) For example, suppose a devel-

opment team is designing a website (the design object) to

sell cameras online (the goal). The website will have many

features (e.g., having the store name in a bold font) that do

not substantially contribute to achieving its goal. However,

other features (e.g., shopping cart) may be necessary con-

ditions for achieving the goal—these necessary features are

requirements. More precisely, given a goal g, a set of

requirements Rg, may be defined as the set of all features

necessary for a design object to achieve g. For the purposes

of this paper, I do not distinguish between early- and

late-stage requirements [16], hard/functional and soft/

non-functional requirements [15] or requirements and

constraints [17].

3 Ontological and epistemological challenges

Suppose exactly two design objects D1 and D2 will achieve

a goal g. Features of both design objects are requirements

as there is no way to achieve g without them (Table 1).

Properties of D1 but not D2 are not requirements as g may

be achieved without them (building D2); properties of D2

but not D1 are not requirements as g may be achieved

without them (building D1). Properties of neither object are

irrelevant. More generally, suppose g may be achieved by n

design objects (D1, D2, … Dn) each with features (F1, F2,

… Fn). The set of requirements Rg may then be defined as

the intersection of the properties (Rg = F1 \ F2 \… \ Fn).

Characterizing requirements as such reveals two

assumptions. First, the existence of requirements entails

overlap among design object features that may achieve a

goal (Rg = F1 \ F2 \ … \ Fn = [). In contrast, if the

properties do not overlap (Rg = F1 \ F2 \ … \ Fn = [),

there are no requirements (an ontological problem; Fig. 1).

Second, stating requirements assumes that all relevant

design objects (or classes thereof) have been identified. If

another solution, which will achieve g without any prop-

erties in common with known solutions, may exist, no

properties of the existing solution sets are requirements (an

epistemological problem). For example, suppose a com-

pany sets out to protect their network against malware,

writing a requirements specification for a sophisticated

antivirus system. During review, someone asks ‘‘Why

don’t we just switch to Mac OS or Linux instead as they

have fewer problems with viruses?’’ This reveals ostensible

‘‘requirements’’ as merely features of one solution.

In summary, if the solution space is unknowable or lacks

overlap, no requirements can be stated. This is not the same

as acknowledging ambiguous, conflicting or incomplete

requirements. Either lack of overlap or epistemic uncer-

tainty produces a no-requirements scenario.

4 Limitations and proceeding without requirements

The ontological and epistemological challenges to the

requirements concept described above are obviously

somewhat simplified. First, the discussion takes a coun-

terfactual approach to causality [24] when a probabilistic

approach would be more appropriate (features may

increase success probability rather than being ‘‘necessary

conditions’’). Second, the definition of requirement

excludes other non-critical desiderata (wants, preferences),

which may still be important. Third, identifying a needed

feature may not always necessitate understanding the full

scope of the design space—a highly credible informant’s

comment that ‘‘the board will never approve this if it won’t

work on an iPhone’’ may be sufficient to justify stating a

requirement.

However, the illustration illuminates two fundamental

problems. First, we can conceive of situations (e.g.,

knowledge worker burnout) where two completely

Table 1 Relationship between properties and requirements

Property of D1 Not a property of D1

Property of D2 Requirement Feature

Not property of D2 Feature Irrelevant

Requirements Eng

123



different approaches (e.g., better tool support or hire more

employees) may achieve the same goal (e.g., decrease work

hours)—in such cases of low solution overlap, few if any

requirements can be stated. Second, without fully exploring

the design space, we cannot be sure whether there exists

another approach, which would achieve the goal without

any features of known approaches.

This leaves the intellectual enterprise of RE research

with two possibilities. One is that we should expect many

software development projects to have few if any legiti-

mate requirements, rendering many requirements engi-

neering approaches ineffective or inappropriate in these

contexts. This raises fundamental questions concerning

how to adapt existing RE approaches to no-requirements

scenarios, or how to proceed without requirements more

generally.

Possibility two is that many existing RE approaches

operationalize the requirements construct more generally—

as desiderata, which may or may not be strictly necessary

for success. This is problematic due to the strong denota-

tion and connotation of the term. The word ‘‘requirement’’

denotes a thing that is compulsory. Listing requirements

connotes certainty and unambiguousness. For example,

when an analyst states that ‘‘cross-platform compatibility’’

is a requirement, novice developers and stakeholders

unfamiliar with the challenges of RE are unlikely to

interpret this as ‘‘the analyst hypothesizes that cross-plat-

form compatibility will increase the probability that the

system will achieve its objectives but we will not know for

sure until the system is built, if ever’’ or ‘‘all of the plau-

sible design candidates generated so far include cross-

platform compatibility, but we have not fully explored the

design space.’’ A wide variety of cognitive phenomena

including anchoring bias [25], fixation [26] and confirma-

tion bias [27] suggest that misrepresenting an incidental

feature as a requirement will reduce exploration of the

design space, curtailing innovation [28].

The argument of this paper may be challenged on at

least two grounds. First, one may draw a distinction

between mandatory and optional requirements. In response,

I reiterate the psychological effect of mislabeling features

as ‘‘requirements’’ (above) and suggest that the ‘‘optional

requirement’’ label will likely increase confusion. Second,

one may argue for conditional requirements, wherein some

features become requirements conditional on other fea-

tures, for example, ‘‘given that the design artifact is a

website, it must be HTML5-compliant.’’ However, this

creates a reductionist spiral where virtually all design

decisions may be recast as conditional requirements,

undermining the distinction between requirements and

design decisions and further confusing developers and

curtailing innovation.

In conclusion, this paper presents two novel challenges

to RE. The ontological challenge posits that where many

plausible approaches to achieving a goal are evident, there

may be insufficient overlap between approaches to form

requirements. The epistemological challenge posits that

while all plausible approaches may have sufficient overlap

to state requirements, one cannot know that unless all

approaches are identified and one is somehow sure that

none have been missed. I have formulated these challenges

to stimulate debate on fundamental properties and

assumptions of requirements in theory and practice. They

raise important questions about possible requirement-

sparse environments and the implications of goals, fea-

tures, conjectures and design decisions mislabeled as

requirements.

References

1. Boehm B (1991) Software risk management: principles and

practices. IEEE Softw 8(1):32–41

2. Jacobson I, Booch G, Rumbaugh J (1999) The unified software

development process. Addison-Wesley Longman Publishing Co.,

Inc., Boston

3. Ewusi-Mensah K (2003) Software development failures. MIT

Press, Cambridge

4. Standish Group (2009) CHAOS summary 2009. Boston, MA,

USA http://www.standishgroup.com/newsroom/chaos_2009.php

5. IEEE (1998) IEEE Standard 830-1998: recommended practice for

software requirements specifications. http://standards.ieee.org/

findstds/standard/830-1998.html

6. Topi H, Valacich JS, Wright RT, Kaiser KM, Nunamaker JF,

Sipior JC, Vreede GJd (2010) IS 2010: curriculum guidelines for

undergraduate degree programs in information systems. Com-

munications of association for information systems 26:Article 18.

http://aisel.aisnet.org/cais/vol26/iss1/18/

7. Joint Task Force on Computing Curricula (2004) Software

engineering 2004: curriculum guidelines for undergraduate

degree programs in software engineering. In: Dı́az-Herrera JL,

Fig. 1 Relationship between

features (dots) and

requirements. Features common

to all design alternatives are

requirements (left); where no

features overlap, no

requirements exist (right)

Requirements Eng

123

http://www.standishgroup.com/newsroom/chaos_2009.php
http://standards.ieee.org/findstds/standard/830-1998.html
http://standards.ieee.org/findstds/standard/830-1998.html
http://aisel.aisnet.org/cais/vol26/iss1/18/


Hilburn TB (eds). http://sites.computer.org/ccse/SE2004Volume.

pdf

8. Simon HA (1996) The sciences of the artificial, 3rd edn. MIT

Press, Cambridge

9. Brooks FP (2010) The design of design: essays from a computer

scientist. Addison-Wesley Professional, Reading

10. Ralph P (2011) Introducing an empirical model of design. Paper

presented at the 6th Mediterranean conference on information

systems, Limassol, Cyprus, 3–5 Sep

11. Davis AM, Zowghi D (2006) Good requirements practices are

neither necessary nor sufficient. Requir Eng 11(1):1–3

12. Shenhar AJ, Dvir D, Levy O, Maltz AC (2001) Project success: a

multidimensional strategic concept. Long Range Plan 34(6):699–

725

13. van Lamsweerde A (2001) A goal-oriented requirements

engineering: a guided tour. In: Proceedings of the fifth IEEE

international symposium on requirements engineering, Aug,

pp 249–262

14. Sutcliffe A, Thew S, Jarvis P (2011) Experience with user-cen-

tred requirements engineering. Requir Eng 16(4):267–280

15. Chung L, Nixon BA, Yu E (2000) Non-functional requirements

in software engineering. Kluwer international series in software

engineering, vol 5. Springer, Berlin

16. Fuxman A, Liu L, Mylopoulos J, Pistore M, Roveri M, Traverso

P (2004) Specifying and analyzing early requirements in tropos.

Requir Eng 9(2):132–150

17. Ralph P, Wand Y (2009) A proposal for a formal definition of the

design concept. In: Lyytinen K, Loucopoulos P, Mylopoulos J,

Robinson W (eds) Design requirements engineering: a ten-year

perspective. Lecture notes on business information processing,

vol 14. Springer, Berlin, pp 103–136

18. Bahill AT, Dean FF (2009) Discovering system requirements. In:

Sage AP, Rouse WB (eds) Handbook of systems engineering and

management, 2nd edn. Wiley, New York, pp 205–266

19. Bourque P, Dupuis R (eds) (2004) Guide to the software engi-

neering body of knowledge (SWEBOK). IEEE Computer Society

Press, Silver Spring

20. Yu E (1997) Towards modelling and reasoning support for early-

phase requirements engineering. In: Proceedings of the third

IEEE international symposium on requirements engineering,

pp 226–235

21. Roman G-C (1985) A taxonomy of current issues in requirements

engineering. Computer 18(4):14–23

22. Gotel O, Finkelstein A (1994) An analysis of the requirements

traceability problem. In: First international conference on

requirements engineering, Colorado Springs, CO, USA, IEEE

Computer Society Press, pp 94–101

23. Ramesh B, Jarke M (2001) Toward reference models for

requirements traceability. IEEE Trans Softw Eng 27(1):58–93

24. Gregor S (2006) The nature of theory in information systems.

MIS Q 30(3):611–642

25. Parsons J, Saunders C (2004) Cognitive heuristics in software

engineering: applying and extending anchoring and adjustment to

artifact reuse. IEEE Trans Softw Eng 30:873–888

26. Jansson DG, Smith SM (1991) Design fixation. Des Stud

12(1):3–11

27. Oswald ME, Grosjean S (2004) Confirmation bias. In: Pohl RF

(ed) Cognitive illusions: a handbook on fallacies and biases in

thinking, judgement and memory. Psychology Press, Hove,

pp 79–96

28. Ralph P (2011) Toward a theory of debiasing software develop-

ment. In: Wrycza S (ed) Research in systems analysis and design:

models and methods: In 4th SIGSAND/PLAIS EuroSymposium

2011. LNBIP, vol 93. Springer, Gdansk, Poland. pp 92–105

Requirements Eng

123

http://sites.computer.org/ccse/SE2004Volume.pdf
http://sites.computer.org/ccse/SE2004Volume.pdf

	The illusion of requirements in software development
	Abstract
	Introduction
	Some explicit assumptions
	Ontological and epistemological challenges
	Limitations and proceeding without requirements
	References


