
contributed articles

December 2008 | vol. 51 | no. 12 | communications of the acm 143

doi: 10.1145/1409360.1409387

by Patrick Stacey and Joe Nandhakumar

In fast-paced business environments like computer
games, Agile would seem to be the appropriate style
of software development. However, our study of
three computer game studios revealed that game
development does not deploy Agile methods as such,
but rather it shares some of Agile’s practices and
values. We were intrigued by how agility was triggered
in game development; triggers undocumented by
proponents of Agile methods. This article distils our
findings into guidelines for nurturing and enhancing
agility in creative software organizations.

Game development is both inspirational and
unpredictable. A game’s features may never be fully
known at the outset of a project, but emerge as the
developers continually play-test it. This is because
a commercial game must be fun, entertaining and
compelling;10 qualities that are only really assessable
when a game is compiled and played. Agile methods
would suggest that game developers write a test script.
This is perhaps more feasible when building commercial
task-oriented software, but a computer game has an
added aesthetic dimension to it; not just in terms of the
look and feel, but the game-play too, i.e. the rules and
level of difficulty of the game. In this respect, a game
also needs to be tested intuitively by the developers; it
may functionally run, but is it fun?

As far as Agile developers are con-
cerned, the issue is mostly about having
working code.6 In Agile methods such
as XP,2 testing is part of a programmer’s
everyday life.2 In XP, testing takes place
within the context of a small cycle or it-
eration alongside other activities such
as analysis and design. Iterative devel-
opment is believed to be largely respon-
sible for enabling agility, as the team
can react expeditiously to changes in
the environment.1 Such flexible practic-
es are infused with Agile values of sim-
plicity, communication, feedback, and
courage,6 and demand developers who
can “hang out on the edge.”5

In this article we present new find-
ings on agility in game development,
and what triggers it, based on a study
of three computer games studios.

Three Computer Games Studios
We conducted studies at CGS (Singa-
pore), Miko (Singapore) and Goo (Lon-
don). All are well known game studios,
and Goo is one of the world’s largest
developers of mobile games. CGS has
developed mobile phone and PC games
in association with studios in Europe,
where their games are also widely
distributed, and Miko is well-known
throughout the Asia-Pacific region as
being at the forefront of location-based
mobile games. To honour confidential-
ity agreements we use pseudonyms to
protect the names of the companies,
their employees and games.

We pursued a research approach
that allowed us to remain open-mind-
ed. So, instead of only asking prepared
questions, we engaged in fluid inter-
views with developers at each com-
pany, with the aim of understanding
their game development process and
practices. At CGS we conducted twenty
interviews with developers, including
one group meeting, between January
and April 2004,9 with several follow-up
visits up until July 2005. In our other
two cases, we conducted thirteen in-
terviews at Miko and six at Goo to simi-
larly elicit and understand their game
development process and practices.
We draw on these two cases to elabo-

Opening Up to
Agile Games
Development

contributed articles

144 communications of the acm | December 2008 | vol. 51 | no. 12

trail flowing towards coding. Lastly, if
there were bugs in the code, made ob-
vious by such unexpected behaviors as
cones not flying into the air when a car
hits them (rigid shape physics errors),
then the process was thrown back to
the code stage, before being play-test-
ed again. However, whichever of these
activities occurred, the process desti-
nation was always play-test; rather like
a boomerang returning to its thrower.

The CG programmer explained that
sometimes code bugs inspired new
creative directions. For example, the
lead programmer found a place in the
virtual world of the game Horizontal
where his character could stand with-
out being shot. Instead of seeing this
as a bug however, it inspired the team
to create an additional enemy that
uniquely had the range to reach that
part of the game-world. Before the boo-
merang was thrown back to the con-
ceptualize stage however (see Figure 1),
this candidate feature was discussed
and evaluated.

At CGS, whether this bug-inspired
feature was added to the game was ul-
timately the game designer’s decision,
since it had implications for the sto-
ryline, game-play and the very identity
of the game. Due to Alf’s business com-
mitments outside the development
context (in his capacity as managing
director), he (as game designer) was
largely unavailable to make a decision.
This dependency temporarily stalled

rate on what we found at CGS. We used
a software package called nVivo to aid
the analysis of the transcripts and field
notes.8 Our analysis brought out es-
sential activities of game development,
and helped us to understand how agil-
ity was provoked.

Game Development Process at CGS.
The study at CGS mainly focused on
the work practices of the managing
director, a project manager, the lead
programmer, a computer graphics
(CG) programmer and an intern pro-
grammer; these people constituted the
core development team (see Table 1).
These and other game developers were
located in two adjoining small offices,
each with a mixture of engineers and
artists who sat in rows in one office and
around the perimeter in the other.

As we explored the game develop-
ment process with each interviewee
at CGS, we found they talked about
one activity in particular, namely play-
testing. The object here was not solely
to identify bugs, but to evaluate the
game-play experience. Evaluating the
aesthetic appeal or ‘fun factor’ led to
changes in the way the game was con-
ceptualized, designed, and coded; a
rapid feedback occurred between con-
ceptualize, design, code and play-test.
This meant the game development
process was tailored almost daily, as in
many Agile approaches.

Testing Within the Context of Play
Since play-testing was afforded so
much attention by the interviewees, we
decided to investigate this and related
practices further. Gradually we began
to think of it in terms of a “boomerang”
(see Figure 1).

The faint lines in Figure 1 indicate a
weak flow of development activities, i.e.
game development usually began with
conceptualization following through
design, code and play-test. The bold
lines indicate the possible and more
common trajectories the process could
take once a game had been play-test-
ed. For instance, if the game concept
needed much re-working it would be
“thrown back” to the conceptualiza-
tion stage. If, however, the concept
was deemed sound, but changes to the
technical and/or aesthetic design were
necessary, then the process would be
thrown back to design, before subse-
quently picking up the original process

development. So, the developers began
making their own design change deci-
sions. This is reminiscent of the calls
for champions in software teams3 and
the Agile value of ‘courage’, such as,
making bold decisions and taking re-
sponsibility for them.

So, while play-testing evoked a vari-
ety of possible creative directions for a
game project, the team had to find ways
of reaching in-house consensus on this
and make a decision before throwing
the boomerang again. CGS did not al-
ways have a customer with whom they
could rely on to make decisions, con-
trary to many Agile projects. This was
particularly the case when they devel-
oped original games, such as Horizon-
tal, “we are the customer, we are gam-
ers,” said the lead programmer. Getting
feedback is an important value in Agile
development. The source of that feed-
back is the distinction in this case; in-
house as opposed to customer.

Reaching Consensus on Play-test Re-
sults. The executive producer at Goo told
us the best games they had made came
about when the team communicated re-
ally well and fluidly, for example, “look-
ing over someone’s shoulder and saying
hey that looks great.” In this way, in-
house consensus emerged naturally re-
garding how to improve the game. Such
fluid communication is an important
value in Agile development too. Weekly
production meetings also helped keep
the team on-page. If consensus regard-
ing play-test next-steps could not be
reached, then the team simply took a
vote during these meetings.

Consensus emerged rather differ-
ently when the team reached a project
milestone. Then, the whole company
of 200 people were emailed a hyperlink
that pointed them to where the game
was stored. They were invited to play-
test it and provide their feedback. We
call this milestone play-testing. Mile-
stone play-testing elicited no less than
fifty different suggestions per mile-
stone. This degree of feedback is be-

Table 1. Core Development Team at CGS

Alf John Richard Mac Angelina

Managing Director/
Game Designer

Project Manager/
Programmer/
Process Cop

Lead Programmer/
Technical
Consultant/ Intern
Overseer

CG Programmer Programmer

Co-founder Recently joined
from IBM

Co-founder Co-founder Intern

Figure 1. Play-test boomerang

contributed articles

December 2008 | vol. 51 | no. 12 | communications of the acm 145

yond what those on some Agile projects
would be accustomed to. It produced a
buzz at Goo, which provoked random
comments even from secretaries light-
ing a creative spark in the team some-
times. The challenge for the executive
producer was to manage this large and
diverse volume of feedback and forge
consensus. His personality was instru-
mental in this; as one interviewee told
us, “he has the expertise and the over-
all vision. And everyone respects that,
everyone respects him.”

Challenges to Play-test Consensus.
Goo’s executive producer could not al-
ways forge consensus easily and this
could delay the development process.
For example, positions on a game were
sometimes taken along “floor lines”,
particularly between the marketing and
production departments. At “Miko” a
political dimension to the development
process was also evident. The producer
there told us how a game project was
always subject to the whims of the man-
agement, as well as all the other stake-
holders. In most of Miko’s game proj-
ects, the managers and directors either
vetoed features of the game or the entire
project. The involvement of people out-
side the development team frustrated
Miko’s producer when they criticized his
project. He was unable to leverage their
feedback and was defensive.

Development Pressure. Such events
at Miko could push some developers
to resign. According to the lead pro-
grammer at CGS, a string of artists had
joined and resigned from CGS. He said
that this was more because they did not
have the right knowledge-level, par-

ticularly with respect to mobile game
development concepts, such as mo-
bile information device profile. When
developers resigned it took time to
recruit freelancers, and so sometimes
an engineer would take over the role of
artist for a while; they had to adapt and
improvise to keep the project moving.
Viewed as job rotation, this is also vis-
ible in Agile development.

The Pathway to Game-
Inspired Agility
We have described a number of prac-
tices in game development, which are
reminiscent of Agile ones. We por-
trayed most of these in the Play-test
boomerang diagram (Figure 1), but
others include reaching consensus on
how to refine a game after milestone
play-testing (a variant on play-testing),
and incumbents adapting to the situ-
ation when people resign. We now
turn our attention to understanding
what triggered these Agile practices
and shed some light on the pathway to
game-inspired agility.

Triggers of Agility in Game Develop-
ment. As people from various depart-
ments “moved into” the development
space, such as the 200 employees dur-
ing play-testing at Goo, this provoked
the developers into an intense evalu-
ation exercise in which they had to re-
spond to a large and diverse volume of
feedback. In dealing with this situation
they exhibited courage, self-belief, and
initiative so they could move the proj-
ect forward smoothly and quickly. So,
the immense and diverse involvement
in play-testing was a trigger for agility.

The other side to this is the develop-
ment team leader asked for this feed-
back; his openness and willingness to
share his team’s work with the wider
corporate community was a trigger.
The interplay of personality traits and
organizational context produced agil-
ity. At Miko however, the attitude and
personality of the producer led to rigid-
ity and inertia; feedback had the oppo-
site effect at Miko.

Conversely, with respect to people
“moving out” of the development space,
“a certain amount of staff turnover is
good for the team”2 such as when some-
one leaves who does not fit into the
team. We found that as people resigned
from CGS, the remaining developers
were prompted to improvise around the
absence created, which further involved
taking the initiative and breaking their
routines. This was evident as well when
developers had to take the initiative
with respect to design decisions in the
absence of the game designer, and also
at Goo and Miko where some of the de-
velopers attended industry events.

Nurturing Agile Software Practices
We now distil our findings into some
guidelines to practitioners on nurturing
agility. First, involve the development
team in the wider corporate commu-
nity, as well as involve this community
in the (play) test/evaluation process.
The Goo case demonstrated that by do-
ing so, they were able to invite a large
volume and diversity of useful feed-
back. Goo’s development team leader
welcomed this feedback, whereas the
leader at Miko interpreted it as out-
sider interference. So, the personality
of the development team leader is also
an important part of nurturing agility;
someone who welcomes criticism.

Second, cultivate a company cul-
ture that believes in and respects its
development team. We saw at Goo in
particular how much respect there was
across the company for the team lead-
er. This will encourage more construc-
tive feedback. At CGS and Goo this was
achieved by “star” developers attending
meetings alongside the team leader,
thereby opening the door on the team
and building up the reputation of the
team. Third, this also helps create an
atmosphere where everyone can speak
up. You never know where the next
great idea is coming from – as we saw

Table 2: Guidelines for Nurturing Agility

Guideline For Example

1. Involve the development team in the
wider corporate community, and involve
this community in the (play) test/evalua-
tion process

The Goo case demonstrated that engaging the wider corporate
community invited a larger volume and diversity of feedback

2. To successfully garner company-
wide buy-in to the (play) test/evaluation
process, cultivate a company culture that
believes in and respects its development
team such that feedback is constructive

Instead of thinking of programmers simply as implementers
get them involved to some degree in other activities. At CGS
and Goo this was achieved by “star” developers attending
meetings alongside the team leader, thereby opening the door
on the team and building up the reputation of the team

3. Create an environment where people
will want to speak-up

Encourage a level playing field where everyone can speak up.
You never know where the next great idea is coming from – as
we saw at Goo, some even came from secretaries.

4. Encourage a healthy spirit of discontent
such that people are not afraid of debate

This was evident from play-testing in general at Goo and CGS

5. Break-up some routines by getting
developers out of their comfort zones

The breaking up of routines helps cultivate an open atmo-
sphere. In the cases we examined, there were little in the
way of routines. That is the nature of the play-test boomerang
(figure 1); practices are tailored daily.

contributed articles

146 communications of the acm | December 2008 | vol. 51 | no. 12

at Goo, some even came from secretar-
ies. Fourth, this suggests nurturing a
culture that is open and encourages a
healthy spirit of discontent. A culture
where people are happy to listen, dis-
cuss new ideas, and are not afraid of
debate. We found evidence of this from
play-testing at Goo and CGS.

Finally, to cultivate this atmosphere
break up routines that can silo working
groups. In the cases we examined, there
were little in the way of routines; that is
the nature of the play-test boomerang
(Figure 1); practices are tailored daily.
DeMarco and Lister would suggest the
opposite, to seal-off the development
team, “The top performers’ space is
quieter, more private, better protected
against interruption.”4 However, we
found that developers who were unpro-
tected from disruption and worked in
an open culture, benefited enormously
from this – it made them more agile;
we gave details of the way the Goo team
responded to and indeed encouraged
feedback. Even in studies of business
agility it has been suggested that IT de-
partments should not be siloed such
that they have little interaction with the
rest of the world.7

Table 2 provides a summary of the
above guidelines for nurturing game-
inspired agility. Our study of three game
studios revealed triggers of agility not
previously documented by proponents
of Agile. These relate to the diversity
and scale of play-testing feedback, staff
turnover, industry events, as well as the
personality of the development team
leader, i.e. not being defensive but being
asking for and being open to company-
wide feedback. Agility then is really in
the hands of the developers; they them-
selves can initiate it, and is produced
during the interplay of personality traits
and organizational context.�

References
	 1.	 Baskerville, R., Ramesh, B., Levine, L., Pries-Heje,

J., Slaughter, S. Is “Internet-speed” software
development different? IEEE Software, 20, 6 (2003),
70-77.

	 2. 	Beck, K., Embracing change with extreme
programming. IEEE Computer, 32, 10 (1999), 70-77.

	 3.	 Curtis, B., Krasner, H., and Iscoe, N. A field study of
the software design process for large systems. Comm.
of the ACM, 31, 11 (Nov. 1988), 1268-1287.

	 4.	 DeMarco, T. and Lister, T. Peopleware:Productive
Projects and Teams. Dorset House, New York, 1987.

	 5.	 Highsmith, J. Agile Software Development
Ecosystems. Addison-Wesley, Boston, MA, 2002.

	 6.	 Lindstrom, L. and Jeffries, R. Extreme programming
and Agile software development methodologies.
Information Systems Management, 24, 3 (2004), 41.

	 7.	 Melarkode, A., From-Poulsen, M., and
Warnakulasuriya, S. Delivering agility through IT.

Business Strategy Review, 15, 3, (2004).
	 8.	 Miles, M.B. and Huberman, M.A., Qualitative Data

Analysis. Sage Publications, Thousand Oaks, CA
(1994).

	 9.	 Stacey, P. and Nandhakumar, J. Managing projects
in a games factory: Temporality and Practices.
In Proceedings of the 38th Hawaii International
Conference on System Sciences, Organizational
Systems and Technology Track, IT and Project
Management. (Waikoloa, HI, 2005), IEEE.

10.	 Swartout, W. and van Lent, M. Making a game of
system design. Comm. of the ACM, 2003. 46, 7 (July
2003), 33-39.

Patrick Stacey (p.stacey@imperial.ac.uk) is a research
associate at Imperial College of Business School, London,
U.K.

Joe Nandhakumar (joe.nandhakumar@wbs.ac.uk) is a
professor of information systems at Warwick Business
School, University of Warwick, U.K.

© 2008 ACM 0001-0782/08/1200 $5.00

