Maximum 3-SAT as QUBO

Michael J. Dinneen¹

Semester 2, 2016

¹Slides mostly based on Alex Fowler's and Rong (Richard) Wang's note of AUCKLAND

Boolean Formula

- A *Boolean variable* is a variable that can take only the values TRUE=1 or FALSE=0.
- The negation/NOT operator of a Boolean variable x is $\overline{x} = 1 x$.
- Binary *Boolean operators*: AND and OR are represented by the symbols ∧ and ∨ respectively.
- A *literal* is a Boolean variable or its negation.
- A *Boolean formula* is an expression involving only Boolean literals, Boolean operators, and parentheses.
- A *clause* is a *disjunction* of literals (literals separated by the ∨ operator).
- A Boolean formula is in *conjunctive normal form* (CNF) if it is the *conjunction* of several clauses.
- It is called a 3CNF-formula if all clauses contain 3 literals. The UNIVERSITY of ALLER AND AL

Examples of Boolean Formula Terminology

Let a, b, x, y, z be Boolean variables. $(x \lor y \lor z)$ and $(a \lor \overline{b})$ are clauses. $(x \lor y) \land (\overline{y} \land z \lor x)$ is a Boolean formula.

A 3CNF formula involving the Boolean variables x_1, x_2 and x_3 is $(x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (x_1 \lor x_2 \lor \overline{x_3})$

We choose to express a 3CNF formula ϕ featuring *n* variables and *m* clauses in the form:

$$\phi = C_1 \wedge C_2 \dots \wedge C_m$$

where each

$$C_i = y_{i1} \vee y_{i2} \vee y_{i3}$$

and the y_{ij} are literals of the *n* variables. We usually label the variables $x_1, x_2, ..., x_n$.

We say that a clause is *satisfied* by an assignment $x = [x_1, ..., x_n] \in \mathbb{Z}_2^n$ if one of its literals takes the value true for this assignment. For example

$$(x_1 \vee \overline{x_2} \vee x_3)$$

is satisfied by the assignment $[x_1, x_2, x_3] = [1, 0, 1]$.

Maximum 3SAT problem

Problem (Maximum 3SAT problem)

Instance:	A 3CNF formula ϕ , involving $n \in \mathbb{N}$ variables and
Question:	$m \in \mathbb{N}$ clauses. Find an assignment to the x_i which satisfies the
	maximum number of ϕ 's clauses.

In relation to the Maximum 3SAT problem for ϕ , for an assignment to the variables $x = [x_1, ..., x_n] \in \mathbb{Z}_2^n$, we define $\phi(x)$ to be the number of clauses satisfied by the assignment x. Thus an instance can be expressed as the pseudo-Boolean optimization problem

$$\max_{\mathbf{x}\in\mathbb{Z}_2^n}\phi(\mathbf{x})\tag{1}$$

Reduce 3SAT to Independent Set

The previous best $\rm QUBO$ transformation for this problem was proposed by Lucas in 2013.

It reduces I into QUBO form by a 2 step process.

- Reduce *I* into a Maximum Independent Set problem, using a well-known reduction (given on next slide).
- 2 Use the Maximum Independent Set QUBO formulation, which uses n = |V| variables.

When this QUBO transformation is applied, the resultant QUBO formulation has 3m variables.

$3SAT \leq_m^P IndSet$

- Let ϕ be a conjunction of m clauses of 3CNF.
- Construct a graph G with 3m vertices that correspond to the literals in ϕ .
- For any clause in $\phi,$ connect the corresponding three vertices in G.
- Connect all pairs of vertices corresponding to a variable x and its negation \overline{x} .
 - Now ϕ is satisfiable iff G has an independent set of size m.
- Furthermore, an independent set of size less than m in G corresponds to a subset of clauses of φ that can be satisfied.

Example Reduction

As an example, consider the Maximum 3SAT problem for

 $\phi = (x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3})$

The corresponding Maximum Independent Set instance is:

Improved Direct Transformation

In our improved transformation F, $\text{QUBO}(F(\phi))$ only requires n + m variables. For each clause C_i , there is a variable w_i , while the original variables x_j also feature.

Letting $x = [x_1, ..., x_n]$ (respectively $w = [w_1, ..., w_m]$) represent assignments to the x_i (respectively w_j) variables, and

$$[x, w] = [x_1, ..., x_n, w_1, ..., w_m] \in \mathbb{Z}_2^{n+m}$$

 $\operatorname{QUBO}(F(\phi))$ is the problem

$$\min_{[x,w]\in\mathbb{Z}_2^{n+m}} [x,w]^T F(\phi)[x,w] = \min_{[x,w]\in\mathbb{Z}_2^{n+m}} -g(x,w) - K_{\phi}$$
(2)

where K_{ϕ} is a constant dependent on ϕ , and

$$g(x, w) = \sum_{i=1}^{m} C_i$$
 is satisfied by $x =$ "number of satisfied clauses"

Firstly, each of ϕ 's clauses $C_i = (y_{i1} \lor y_{i2} \lor y_{i3})$ is formulated as

$$C_i = y_{i1} + y_{i2} + y_{i3} - y_{i1}y_{i2} - y_{i1}y_{i3} - y_{i2}y_{i3} + y_{i1}y_{i2}y_{i3}$$

Thus $\phi(x)$ (the number of clauses satisfied in ϕ by an assignment x) can be expressed as the cubic pseudo-Boolean function

$$\phi(x) = \sum_{i=1}^{m} (y_{i1} + y_{i2} + y_{i3} - y_{i1}y_{i2} - y_{i1}y_{i3} - y_{i2}y_{i3} + y_{i1}y_{i2}y_{i3})$$
(4)

Now by adding in an extra variable w_i , each $y_{i1}y_{i2}y_{i3}$ can be represented quadratically as

$$y_{i1}y_{i2}y_{i3} = \max_{w_i \in \mathbb{Z}_2} w_i(y_{i1} + y_{i2} + y_{i3} - 2)$$

Hence by substituting this representation for $y_{i1}y_{i2}y_{i3}$ into (4), we conclude that for **every** $x \in \mathbb{Z}_2^n$, (4) equals

$$\max_{w \in \mathbb{Z}_2^m} \sum_{i=1}^m \left((1+w_i)(y_{i1}+y_{i2}+y_{i3}) - y_{i1}y_{i2} - y_{i1}y_{i3} - y_{i2}y_{i3} - 2w_i \right)$$

Example Transformation (1/3)

As an example, take the Maximum 3SAT problem for

$$\phi = (x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3})$$

Since the variables of ϕ are x_1, x_2 and x_3 , and ϕ has 4 clauses, the variables of $\text{QUBO}(F(\phi))$ are x_1, x_2, x_3 and w_1, w_2, w_3, w_4 . From formula (3), g(x, w) =

$$= \sum_{i=1}^{m} \left((1+w_i)(y_{i1}+y_{i2}+y_{i3}) - y_{i1}y_{i2} - y_{i1}y_{i3} - y_{i2}y_{i3} - 2w_i \right)$$

= $(1+w_1)(x_1+x_2+x_3) - x_1x_2 - x_1x_3 - x_2x_3 - 2w_1$
+ $(1+w_2)((1-x_1)+x_2+x_3) - (1-x_1)x_2 - (1-x_1)x_3 - x_2x_3 - 2w_2$
+ $(1+w_3)(x_1 + (1-x_2) + x_3) - x_1(1-x_2) - x_1x_3 - (1-x_2)x_3 - 2w_3$
+ $(1+w_4)((1-x_1)+x_2 + (1-x_3)) - (1-x_1)x_2 - (1-x_1)(1-x_3)$
- $x_2(1-x_3) - 2w_4$

Example Transformation (2/3)

Summing this out into its separate components we conclude

$$-g(x,w) = -4 + 0x_1 - 2x_1x_2 + 2x_1x_3 - x_1w_1 + x_1w_2 - x_1w_3 + x_1w_4$$

+ $x_2 - 0x_2x_3 - x_2w_1 - x_2w_2 + x_2w_3 - x_2w_4 - x_3 - x_3w_1$
- $x_3w_2 - x_3w_3 + x_3w_4 + 2w_1 + 0(w_1w_2 + w_1w_3 + w_1w_4)$
+ $w_2 + 0(w_2w_3 + w_2w_4) + w_3 + 0w_3w_4 + 0w_4$

Letting z = [x, w] (for readability), we present

$$-g(x,w) = K + z^{\mathsf{T}}F(\phi)z = -4 + \sum_{1 \leq i \leq j \leq 7} F(\phi)_{i,j} z_i z_j$$

Example Transformation (3/3)

The entries of $F(\phi)$ are

$$F(\phi) = \begin{bmatrix} 0 & -2 & 2 & -1 & 1 & -1 & 1 \\ 0 & 1 & 0 & -1 & -1 & 1 & -1 \\ 0 & 0 & -1 & -1 & -1 & -1 & 1 \\ 0 & 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

and $QUBO(F(\phi))$ is the problem

$$\min_{[x,w]\in\mathbb{Z}_2^7}[x,w]^{\mathsf{T}}\mathsf{F}(\phi)[x,w]$$

Conclusion

For an instance ϕ for the MAX 3SAT problem, we usually have the number of variables *n* being less than the number of clauses *m*.

Observation

Thus, our second direct approach will generally use at least 33% less variables than the number of variables for the reduction to the Maximum Independent Set approach.

To see this compare n + m with 3m.

Some Final Facts about MAX 3SAT

Theorem

The expected number of clauses satisfied by a random assignment to a 3SAT instance (with all clauses different) is within an approximation factor 7/8 of optimal.

Proof.

The probability of a clause not being satisfied is $\left(\frac{1}{2}\right)^3 = 1/8$. Using linearity of expectation we expect $\left(\frac{7}{8}\right)m$ to be true.

Corollary

For every instance of 3SAT, there is a truth assignment that satisfies at least $\frac{7}{8}m$ clauses.

Application: Every instance of 3SAT with at most 7 clauses is satisfiable.

