Maximum 3-SAT as QUBO

Michael J. Dinneen ${ }^{1}$

Semester 2, 2016
${ }^{1}$ Slides mostly based on Alex Fowler's and Rong (Richard) Wang's note

Boolean Formula

- A Boolean variable is a variable that can take only the values True=1 or False=0.
- The negation/NOT operator of a Boolean variable x is $\bar{x}=1-x$.
- Binary Boolean operators: AND and OR are represented by the symbols \wedge and \vee respectively.
- A literal is a Boolean variable or its negation.
- A Boolean formula is an expression involving only Boolean literals, Boolean operators, and parentheses.
- A clause is a disjunction of literals (literals separated by the \vee operator).
- A Boolean formula is in conjunctive normal form (CNF) if it is the conjunction of several clauses.
- It is called a 3CNF-formula if all clauses contain 3 literals.

Examples of Boolean Formula Terminology

Let a, b, x, y, z be Boolean variables.
$(x \vee y \vee z)$ and $(a \vee \bar{b})$ are clauses.
$(x \vee y) \wedge(\bar{y} \wedge z \vee x)$ is a Boolean formula.

A 3CNF formula involving the Boolean variables x_{1}, x_{2} and x_{3} is

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right)
$$

We choose to express a 3CNF formula ϕ featuring n variables and m clauses in the form:

$$
\phi=C_{1} \wedge C_{2} \ldots \wedge C_{m}
$$

where each

$$
C_{i}=y_{i 1} \vee y_{i 2} \vee y_{i 3}
$$

and the $y_{i j}$ are literals of the n variables. We usually label the variables $x_{1}, x_{2}, \ldots, x_{n}$.

We say that a clause is satisfied by an assignment $x=\left[x_{1}, \ldots, x_{n}\right] \in \mathbb{Z}_{2}^{n}$ if one of its literals takes the value true for this assignment. For example

$$
\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right)
$$

is satisfied by the assignment $\left[x_{1}, x_{2}, x_{3}\right]=[1,0,1]$.

Maximum 3SAT problem

Problem (Maximum 3SAT problem)

Instance: A 3CNF formula ϕ, involving $n \in \mathbb{N}$ variables and $m \in \mathbb{N}$ clauses.
Question: Find an assignment to the x_{i} which satisfies the maximum number of ϕ 's clauses.

In relation to the Maximum 3SAT problem for ϕ, for an assignment to the variables $x=\left[x_{1}, \ldots, x_{n}\right] \in \mathbb{Z}_{2}^{n}$, we define $\phi(x)$ to be the number of clauses satisfied by the assignment x. Thus an instance can be expressed as the pseudo-Boolean optimization problem

$$
\begin{equation*}
\max _{x \in \mathbb{Z}_{2}^{n}} \phi(x) \tag{1}
\end{equation*}
$$

Reduce 3SAT to Independent Set

The previous best QUBO transformation for this problem was proposed by Lucas in 2013.

It reduces I into QUBO form by a 2 step process.
(1) Reduce I into a Maximum Independent Set problem, using a well-known reduction (given on next slide).
(2) Use the Maximum Independent Set QUBO formulation, which uses $n=|V|$ variables.

When this QUBO transformation is applied, the resultant QUBO formulation has $3 m$ variables.

3SAT \leq_{m}^{P} IndSet

- Let ϕ be a conjunction of m clauses of 3CNF.
- Construct a graph G with $3 m$ vertices that correspond to the literals in ϕ.
- For any clause in ϕ, connect the corresponding three vertices in G.
- Connect all pairs of vertices corresponding to a variable x and its negation \bar{x}.

Now ϕ is satisfiable iff G has an independent set of size m.

- Furthermore, an independent set of size less than m in G corresponds to a subset of clauses of ϕ that can be satisfied.

Example Reduction

As an example, consider the Maximum 3SAT problem for
$\phi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right)$
The corresponding Maximum Independent Set instance is:

Improved Direct Transformation

In our improved transformation $F, \operatorname{QUBO}(F(\phi))$ only requires $n+m$ variables. For each clause C_{i}, there is a variable w_{i}, while the original variables x_{j} also feature.
Letting $x=\left[x_{1}, \ldots, x_{n}\right]$ (respectively $w=\left[w_{1}, \ldots, w_{m}\right]$) represent assignments to the x_{i} (respectively w_{j}) variables, and

$$
[x, w]=\left[x_{1}, \ldots, x_{n}, w_{1}, \ldots, w_{m}\right] \in \mathbb{Z}_{2}^{n+m}
$$

$\operatorname{QUBO}(F(\phi))$ is the problem

$$
\begin{equation*}
\min _{[x, w] \in \mathbb{Z}_{2}^{n+m}}[x, w]^{T} F(\phi)[x, w]=\min _{[x, w] \in \mathbb{Z}_{2}^{n+m}}-g(x, w)-K_{\phi} \tag{2}
\end{equation*}
$$

where K_{ϕ} is a constant dependent on ϕ, and
$g(x, w)=\sum_{i=1}^{m} C_{i}$ is satisfied by $x=$ "number of satisfied clauses"

Firstly, each of ϕ 's clauses $C_{i}=\left(y_{i 1} \vee y_{i 2} \vee y_{i 3}\right)$ is formulated as

$$
C_{i}=y_{i 1}+y_{i 2}+y_{i 3}-y_{i 1} y_{i 2}-y_{i 1} y_{i 3}-y_{i 2} y_{i 3}+y_{i 1} y_{i 2} y_{i 3}
$$

Thus $\phi(x)$ (the number of clauses satisfied in ϕ by an assignment x) can be expressed as the cubic pseudo-Boolean function

$$
\begin{equation*}
\phi(x)=\sum_{i=1}^{m}\left(y_{i 1}+y_{i 2}+y_{i 3}-y_{i 1} y_{i 2}-y_{i 1} y_{i 3}-y_{i 2} y_{i 3}+y_{i 1} y_{i 2} y_{i 3}\right) \tag{4}
\end{equation*}
$$

Now by adding in an extra variable w_{i}, each $y_{i 1} y_{i 2} y_{i 3}$ can be represented quadratically as

$$
y_{i 1} y_{i 2} y_{i 3}=\max _{w_{i} \in \mathbb{Z}_{2}} w_{i}\left(y_{i 1}+y_{i 2}+y_{i 3}-2\right)
$$

Hence by substituting this representation for $y_{i 1} y_{i 2} y_{i 3}$ into (4), we conclude that for every $x \in \mathbb{Z}_{2}^{n}$, (4) equals

$$
\max _{w \in \mathbb{Z}_{2}^{m}} \sum_{i=1}^{m}\left(\left(1+w_{i}\right)\left(y_{i 1}+y_{i 2}+y_{i 3}\right)-y_{i 1} y_{i 2}-y_{i 1} y_{i 3}-y_{i 2} y_{i 3}-2 w_{i}\right)
$$

Example Transformation (1/3)

As an example, take the Maximum 3SAT problem for
$\phi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right)$
Since the variables of ϕ are x_{1}, x_{2} and x_{3}, and ϕ has 4 clauses, the variables of $\mathrm{QUBO}(F(\phi))$ are x_{1}, x_{2}, x_{3} and $w_{1}, w_{2}, w_{3}, w_{4}$.
From formula (3), $g(x, w)=$

$$
\begin{aligned}
& =\sum_{i=1}^{m}\left(\left(1+w_{i}\right)\left(y_{i 1}+y_{i 2}+y_{i 3}\right)-y_{i 1} y_{i 2}-y_{i 1} y_{i 3}-y_{i 2} y_{i 3}-2 w_{i}\right) \\
& =\left(1+w_{1}\right)\left(x_{1}+x_{2}+x_{3}\right)-x_{1} x_{2}-x_{1} x_{3}-x_{2} x_{3}-2 w_{1} \\
& +\left(1+w_{2}\right)\left(\left(1-x_{1}\right)+x_{2}+x_{3}\right)-\left(1-x_{1}\right) x_{2}-\left(1-x_{1}\right) x_{3}-x_{2} x_{3}-2 w_{2} \\
& +\left(1+w_{3}\right)\left(x_{1}+\left(1-x_{2}\right)+x_{3}\right)-x_{1}\left(1-x_{2}\right)-x_{1} x_{3}-\left(1-x_{2}\right) x_{3}-2 w_{3} \\
& +\left(1+w_{4}\right)\left(\left(1-x_{1}\right)+x_{2}+\left(1-x_{3}\right)\right)-\left(1-x_{1}\right) x_{2}-\left(1-x_{1}\right)\left(1-x_{3}\right) \\
& -x_{2}\left(1-x_{3}\right)-2 w_{4}
\end{aligned}
$$

Example Transformation (2/3)

Summing this out into its separate components we conclude

$$
\begin{aligned}
-g(x, w) & =-4+0 x_{1}-2 x_{1} x_{2}+2 x_{1} x_{3}-x_{1} w_{1}+x_{1} w_{2}-x_{1} w_{3}+x_{1} w_{4} \\
& +x_{2}-0 x_{2} x_{3}-x_{2} w_{1}-x_{2} w_{2}+x_{2} w_{3}-x_{2} w_{4}-x_{3}-x_{3} w_{1} \\
& -x_{3} w_{2}-x_{3} w_{3}+x_{3} w_{4}+2 w_{1}+0\left(w_{1} w_{2}+w_{1} w_{3}+w_{1} w_{4}\right) \\
& +w_{2}+0\left(w_{2} w_{3}+w_{2} w_{4}\right)+w_{3}+0 w_{3} w_{4}+0 w_{4}
\end{aligned}
$$

Letting $z=[x, w]$ (for readability), we present

$$
-g(x, w)=K+z^{T} F(\phi) z=-4+\sum_{1 \leq i \leq j \leq 7} F(\phi)_{i, j} z_{i} z_{j}
$$

Example Transformation (3/3)

The entries of $F(\phi)$ are

$$
F(\phi)=\left[\begin{array}{ccccccc}
0 & -2 & 2 & -1 & 1 & -1 & 1 \\
0 & 1 & 0 & -1 & -1 & 1 & -1 \\
0 & 0 & -1 & -1 & -1 & -1 & 1 \\
0 & 0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

and $\operatorname{QUBO}(F(\phi))$ is the problem

$$
\min _{[x, w] \in \mathbb{Z}_{2}^{7}}[x, w]^{T} F(\phi)[x, w]
$$

Conclusion

For an instance ϕ for the MAX 3SAT problem, we usually have the number of variables n being less than the number of clauses m.

Observation

Thus, our second direct approach will generally use at least 33\% less variables than the number of variables for the reduction to the Maximum Independent Set approach.

To see this compare $n+m$ with $3 m$.

Some Final Facts about MAX 3SAT

Theorem

The expected number of clauses satisfied by a random assignment to a 3SAT instance (with all clauses different) is within an approximation factor $7 / 8$ of optimal.

Proof.

The probability of a clause not being satisfied is $\left(\frac{1}{2}\right)^{3}=1 / 8$. Using linearity of expectation we expect $\left(\frac{7}{8}\right) m$ to be true.

Corollary

For every instance of 3SAT, there is a truth assignment that satisfies at least $\frac{7}{8} m$ clauses.

Application: Every instance of 3SAT with at most 7 clauses is satisfiable.

