2018 SS

Question 37
[1 mark] What is the output of the following code?
$\mathrm{x}=[6,3,0,9,1,6,5,4]$
$y=\operatorname{sorted}(x)$
print('x =', $x, ~ ' y=', y)$
(a) $x=[6,3,0,9,1,6,5,4] y=[9,6,6,5,4,3,1,0]$
(b) $x=[6,3,0,9,1,6,5,4] y=[0,1,3,4,5,6,6,9]$
(c) $x=[0,1,3,4,5,6,6,9] y=[0,1,3,4,5,6,6,9]$
(d) $x=[9,6,6,5,4,3,1,0] y=[9,6,6,5,4,3,1,0]$
(e) None of the above

Question 38

[1 mark] What is the Big O time complexity of the python sorted() function?
(a) $\mathrm{O}(\log \mathrm{n})$
(b) $\mathrm{O}\left(\mathrm{n}^{2}\right)$
(c) $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
(d) $\mathrm{O}(\mathrm{n})$
(e) None of the above

Given the following function definitions used in a bubble sort algorithm:
def swap(values, $i, j):$
values[i], values[j] = values[j], values[i]
def bubble(values):
for i in range(len(values) - 1): if values[i] > values[i + 1]: swap(values, i, i+1)
def bubble_sort(values):
for i in range(len(values)): bubble(values)

Question 39

[1.5 marks] What will the following list look like after three passes of the bubble operation? [54, 26, 93, 17, 77, 31, 44, 55, 20]
(a) $[17,26,31,44,20,54,55,77,93]$
(b) $[17,26,31,44,54,20,55,77,93]$
(c) $[54,26,17,31,44,20,55,77,93]$
(d) $[26,17,31,44,20,54,55,77,93]$
(e) None of the above

Question 40

[1 mark] What is the Big-O time complexity for sorting a list using the bubble sort algorithm?
(a) $\mathrm{O}(\log \mathrm{n})$
(b) $O(n \log n)$
(c) $\mathrm{O}\left(\mathrm{n}^{2}\right)$
(d) $\mathrm{O}(\mathrm{n})$
(e) None of the above

Given the following function definitions used in a selection sort algorithm:
def swap(values, i, j):
values[i], values[j] = values[j], values[i]
def selection_sort(values):
for fill_slot in range(len(values)-1,0,-1):
pos_max = 0
for i in range(1,fill_slot+1):
if values[i] > values[pos_max]:
pos_max = i
swap(values, pos_max, fill_slot)

Question 41

[1.5 marks] What will the following list look like after three passes of the selection sort algorithm? $[29,10,14,37,13]$
(a) $[13,14,10,29,37]$
(b) $[13,10,14,29,37]$
(c) $[37,29,14,10,13]$
(d) $[10,14,13,29,37]$
(e) None of the above

Question 42

[1 mark] What is the Big O time complexity for sorting a list using the selection sort algorithm?
(a) $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
(b) $\mathrm{O}(\mathrm{n})$
(c) $\mathrm{O}(\log \mathrm{n})$
(d) $\mathrm{O}\left(\mathrm{n}^{2}\right)$
(e) None of the above

2017 S2

Question 27

[2 marks] Given the following list: [93, 17, 26, 31, 77], what does the list look like after the THIRD pass when sorting it in ascending (increasing) order using the Insertion Sort algorithm as discussed in the lectures?
(a) $[17,26,93,31,77]$
(b) $[17,26,31,93,77]$
(c) $[93,17,26,31,77]$
(d) $[17,26,31,77,93]$
(e) None of the above.

Question 29

[2 marks] Given is a list with the elements [2k, $2 \mathrm{k}-1$] for $\mathrm{k}=1, \ldots, \mathrm{n} / 2$ (e.g. for $\mathrm{n}=10$ the list is $[2,1,4,3,6,5,8,7,10,9$]). Which of the following statements is true?
(a) Sorting the above list with Bubble Sort has a time complexity (running time) of $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
(b) Sorting the above list with Insertion Sort has a time complexity (running time) of $\mathrm{O}(\mathrm{n})$
(c) Sorting the above list with Selection Sort has a time complexity (running time) of O(n)
(d) Sorting the above list with Selection Sort has a time complexity (running time) of $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
(e) Sorting the above list with Bubble Sort has a time complexity (running time) of $\mathrm{O}(\mathrm{n})$

Question 38

Consider the list of numbers below:
[50, 8, 57, 6, 90, 17, 89]
Using the techniques demonstrated in lectures, show the list for each pass when using:
a) Selection sort
\square
b) Bubble sort

2017 S1
2 marks] Given a list with the values 1 to n in reverse order, i.e. [$\mathrm{n}, \mathrm{n}-1, \ldots, 3,2,1$], which of the following five statements are true?
I Sorting the above list with Insertion Sort has a time complexity (running time) of $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right.$)
II Sorting the above list with Bubble Sort has a time complexity (running time) of $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right.$)
III Sorting the above list with Selection Sort has a time complexity (running time) of O($\mathrm{n}^{\wedge} 2$)
IV Sorting the above list with Shell Sort has a time complexity (running time) of $\mathrm{O}(\mathrm{n})$
V Sorting the above list with Merge Sort has a time complexity (running time) of $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
(a) II, III and V
(b) I, II, III, and V
(c) I, II and III
(d) II and V
(e) All statements I-V are true

2017 S1

Question 40

[2 marks] Given the list [94, 22, 52, 41, 7, 76, 18, 39], what does the list look like after the first pass when sorting it in ascending (increasing) order using the Bubble Sort algorithm discussed in the lectures?
(a) $[22,52,41,7,76,18,39,94]$
(b) $[7,22,18,39,94,76,52,41]$
(c) $[22,94,52,41,7,76,18,39]$
(d) $[39,22,52,41,7,76,18,94]$
(e) None of the above.

Question 41

[2 marks] Given the list [94, 22, 52, 41, 7, 76, 18, 39], what does the list look like after the first pass when sorting it in ascending (increasing) order using the Selection Sort algorithm discussed in the lectures?
(a) $[22,52,41,7,76,18,39,94]$
(b) $[7,22,18,39,94,76,52,41]$
(c) $[39,22,52,41,7,76,18,94]$
(d) $[22,94,52,41,7,76,18,39]$
(e) None of the above.

Question 42

[2 marks] Given the list [94, 22, 52, 41, 7, 76, 18, 39], what does the list look like after the first pass when sorting it in ascending (increasing) order using the Insertion Sort algorithm discussed in the lectures?
(a) $[7,22,18,39,94,76,52,41]$
(b) $[39,22,52,41,7,76,18,94]$
(c) $[22,52,41,7,76,18,39,94]$
(d) $[22,94,52,41,7,76,18,39]$
(e) None of the above.

Question 44

[2 marks] Below is an implementation of the Insertion Sort algorithm (for sorting a list in descending (decreasing) order). Three lines of the code have been omitted.

```
def my_insertion_sort(a_list):
    for index_number in range(1, len(a_list)):
        item_to_insert = a_list[index_number]
        index = index_number - 1
        #DELETED_LINE_1
            #DELETED_LINE_2
            #DELETED_LINE_3
        a_list[index + 1] = item_to_insert
```

What code do we need to insert in the three deleted lines in order to get Insertion Sort algorithm correctly sorting a list in descending order?
(a) while index >= 0 and a_list[index] < item_to_insert:
a_list[index + 1] = a_list[index]
index -= 1
(b) while index >= 0 and a_list[index] > item_to_insert:
a_list[index + 1] = a_list[index] index -= 1
(c) while index >= 0 and a_list[index] < item_to_insert: a_list[index] = a_list[index + 1] index -= 1
(d) while index >= 0 and a_list[index] > item_to_insert: a_list[index] = a_list[index + 1] index -= 1
(e) None of the above.

Question 54
[2 marks] Given a list with the values 1 to n in reverse order, i.e. $[\mathrm{n}, \mathrm{n}-1, \ldots, 3,2,1]$, which of the following five statements are true?
I Sorting the above list with Insertion Sort has a time complexity (running time) of $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right.$)
II Sorting the above list with Bubble Sort has a time complexity (running time) of $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$
III Sorting the above list with Selection Sort has a time complexity (running time) of $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$
IV Sorting the above list with Shell Sort has a time complexity (running time) of O(n)
V Sorting the above list with Merge Sort has a time complexity (running time) of $\mathrm{O}(\mathrm{n} \log \mathrm{n}$)
(a) II, III and V
(b) I, II, III, and V
(c) I, II and III
(d) II and V
(e) All statements I-V are true

2017 SS

Question 36

[8 marks]

Consider the insertion_sort () function as defined below:

```
def insertion_sort(values):
```

 for index in range(1, len(values)):
 current_value = values[index]
 position = index
 while position > 0 and values[position - 1] > current_value:
 values[position] = values[position - 1]
 position = position - 1
 values[position] = current_value
 print(index, ':', values)
 Notice that a print () statement has been added at the very end of the insertion_sort() function. This is so that we can visualise the order of the elements in the list at the end of each iteration of the insertion sort algorithm. The print () statement displays the value of the variable index, as well as the list items.

If the insertion_sort () function is called with the following list:

$$
\text { my_list }=[4,3,2,1]
$$

insertion_sort(my_list)
then the for loop in the insertion_sort () function will be executed exactly 3 times (the value of the variable index will change from 1 to 2 to 3 as this loop executes). Exactly what would be printed by the print () statement (at the end of each iteration of the for loop) as the insertion_sort() function executes?

The last line of output (when the array is sorted) is provided, as are the values of index. Complete the missing two lines of output below:
$1:[$
$2:[$
$3:[1,2,3,4]$

2016S2

Question 36

[2 marks] Given is the list [48, 64, 11, 66, 52, 31, 40, 41]. What does the list look like after the first pass when sorting it in ascending (increasing) order with the Bubble Sort algorithm discussed in lectures?
(a) $[48,11,64,52,31,40,41,66]$
(b) $[48,31,11,41,52,64,40,66]$
(c) $[48,64,11,66,52,31,40,41]$
(d) $[48,64,11,41,52,31,40,66]$
(e) None of the other answers.

Question 37

[2 marks] Given is the list [$48,64,11,66,52,31,40,41$]. What does the list look like after the first pass when sorting it in ascending (increasing) order with the Selection Sort algorithm discussed in lectures?
(a) $[48,64,11,66,52,31,40,41]$
(b) $[48,64,11,41,52,31,40,66]$
(c) $[48,11,64,52,31,40,41,66]$
(d) $[48,31,11,41,52,64,40,66]$
(e) None of the other answers.

Question 38

[2 marks] Given is the list [$48,64,11,66,52,31,40,41]$. What does the list look like after the first iteration (gap size 4) when sorting it in ascending (increasing) order with the Shell Sort algorithm discussed in lectures?
(a) $[48,31,11,41,52,64,40,66]$
(b) $[48,64,11,66,52,31,40,41]$
(c) $[48,64,11,41,52,31,40,66]$
(d) $[48,11,64,52,31,40,41,66]$
(e) None of the other answers.

Question 39

[2 marks] Given is a list with the elements [2k, $2 \mathrm{k}-1$] for $\mathrm{k}=1, \ldots, \mathrm{n} / 2$ (e.g. for $\mathrm{n}=10$ the list is $[2,1,4,3,6,5,8,7,10,9]$).
Which of the following statements is true?
(a) Sorting the above list with Selection Sort has a time complexity (running time) of $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
(b) Sorting the above list with Insertion Sort has a time complexity (running time) of $\mathrm{O}(\mathrm{n})$
(c) Sorting the above list with Bubble Sort has a time complexity (running time) of $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
(d) Sorting the above list with Selection Sort has a time complexity (running time) of O(n)
(e) Sorting the above list with Bubble Sort has a time complexity (running time) of $\mathrm{O}(\mathrm{n})$

Question 40

[2 marks] Below is the code of the Selection Sort algorithm (for sorting a list in ascending (increasing) order) with two lines deleted:

```
def selection_sort(a_list):
    for pass_num in range(len(a_list) - 1, 0, -1):
            pos = 0
            for i in range(1, pass_num+1):
                DELETED_LINE_1
                DELETED_LINE_2
            a_list[pos], a_list[pass_num] = a_list[pass_num], a_list[pos]
```

What code do we need to insert for these two deleted lines in order to get a correctly working Selection Sort algorithm?
(a) if a_list[i] < a_list[pass_num]:
pos = pass_num
(b) if a_list[i] > a_list[pass_num]: pos = pass_num
(c) if a_list[i] > a_list[pos]: pos = i
(d) if a_list[i] < a_list[pos]: pos = i
(e) None of the other answers.

