
1

2018 SS

Question 25
[1 mark] Which of the following is not an important property of a recursive function?

(a) A recursive function must be more efficient than using a loop

(b) A recursive function calls itself in its definition

(c) A recursive function contains a base case that enables recursive calls to stop

(d) Each recursive function call solves an identical but smaller problem

(e) None of the above

Question 26
[1 mark] Consider the following recursive function definition:

def hailstone(value):
 print(value, end = ' ')
 if(value == 1):
 return
 elif(value % 2 == 0):
 hailstone(value // 2)
 elif(value % 2 == 1):
 hailstone(value*3 + 1)

What would be the output of the following code?
hailstone(5)

(a) 5 24 12 6 3 2 1
(b) 5 8 4 2 1
(c) 16 8 4 2 1
(d) 5 16 8 4 2 1
(e) None of the above

Question 27
[1 mark] Consider the following recursive function definition:

def fun(a,b):
 if a == b:
 return a
 else:
 return a + fun(a+1, b)

What would be the output of the following function call?

print(fun(3,9))

(a) 30
(b) 42
(c) 33
(d) 39
(e) None of the above

Question 28
[1 mark] What is the Big-O time complexity of the following function (fib) that calculates the nth number in the Fibonacci sequence?

def fib(n):
 if n <= 2:
 return 1
 else: return fib(n-1) + fib(n-2)

(a) O(2n)

(b) O(n2)

(c) O(n)

(d) O(log n)

(e) None of the above

2

2017 S2
Question 19
[2 marks] Consider the following recursive function definition.

def exam_function(number):
 if number > 0:
 remainder = number % 2
 digit = str(remainder)
 return exam_function(number // 2) + digit
 else:
 return ""

What would be the output of the following function call?

print(exam_function(37))

(a) Infinite recursion.

(b) 101001

(c) 100101

(d) 010110

(e) None of the above.

Question 29
[1.5 marks] Consider the following recursive function definition:

def print_recursive(s):
 if len(s) == 0:
 print('Complete', end = ' ')
 else:
 print(s[-1], end = ' ')
 print_recursive(s[0:-1])

What would be the output of the following function call?

print_recursive('cs105')

(a) Complete 5 0 1 s c
(b) Complete c s 1 0 5
(c) c s 1 0 5 Complete
(d) 5 0 1 s c Complete
(e) None of the above

Question 30
[1.5 marks] The following recursive function, sum_list(), takes in a list of integers and returns the sum of these values. The else block definition
is missing and has been replaced with ‘???’

def sum_list(values):
 if len(values) == 0:
 return 0
 else:
 ???
Which statement should replace the ‘???’ to correctly complete the function definition?

(a) return values[-1] + sum_list(values[1:])
(b) return values[0] + sum_list(values[:-1])
(c) return values[-1] + sum_list(values[:-1])
(d) return values[1] + sum_list(values[1:])
(e) None of the above

3

(e) II, III, IV and V

Question 22
[2 marks] The remove_vowel() function takes a string as a parameter and returns the string with all vowels removed. For example:

remove_vowel("television")

would return the string "tlvsn".

The code for the remove_vowel() function is provided below. The "if" block of the function definition is missing, and has been replaced with
????.

def remove_vowel(a_string):
 vowels = ["a","e","i","o","u"]
 for i in range(len(a_string)):
 if a_string[i] in vowels:
 ????
 return a_string

Which statement should replace the ???? above to correctly complete this recursive function definition?

(a) return remove_vowel(a_string[:i]) + a_string[i+1:]
(b) return a_string[i] + remove_vowel(a_string[:i] + a_string[i+1:])
(c) return a_string[i] + remove_vowel(a_string[i+1:])
(d) return a_string[:i] + remove_vowel(a_string[i+1:])
(e) None of the above.

Question 37
a) In mathematics, the Pell numbers are an infinite sequence of integer values. The first 6 Pell numbers are 0, 1, 2, 5, 12, and 29. The Pell

numbers can be defined recursively as follows:

pellሺ݊ሻ ൌ ൝
0																																																						if	݊ ൌ 0
1																																																						if	݊ ൌ 1
2 ∗ pellሺ݊ െ 1ሻ ൅ pellሺ݊ െ 2ሻ		if	݊ ൐ 1

Question 20
[2 marks] Consider the following list below:

If we were to use the binary_search() function discussed in lectures to search for the value 53 in this list, how many calls to the
binary_search() function would be made in total (including the top level call)?

(a) 3

(b) 4

(c) 5

(d) 2

(e) None of the above.

Question 21
[2 marks] Which of the following statements is TRUE?

I A recursive solution to a problem is always preferable.
II A recursive function calls itself.
III Each recursive call diminishes the size of the problem.
IV A recursive function can have one or more base cases.
V A recursive function can have one or more recursive steps.

(a) II, III and IV

(b) I, II and V

(c) II, IV and V

(d) I, II, III, IV and V

4

In other words, the sequence of Pell numbers starts with 0 and 1, and then each Pell number is the sum of twice the previous Pell number
and the Pell number before that.

Complete the pell() function below that takes a single integer parameter n, and returns the nth Pell number in the sequence. The pell()
function must be implemented recursively using the provided definition.

def pell(n):

(5 marks)
2017 S1
The following 3 questions use the radix_convert_to_Dec(num, radix) function below:

def radix_convert_to_Dec(num, radix):
 a = num // 10
 b = num % 10
 if (a > 0):
 result = b + radix * radix_convert_to_Dec(a, radix)
 else:
 result = b
 return result

The following 3 questions use the Dec_convert_to_radix(num, radix) function below:

def Dec_convert_to_radix(num, radix):
 a = num // radix
 b = num % radix
 if (a > 0):
 result = b + 10 * Dec_convert_to_radix(a, radix)
 else:
 result = b
 return result

Question 25
[1.5 marks] Which output is produced when the statement print(radix_convert_to_Dec(111, 2)) is executed?

(a) 11

(b) 7

(c) 3

(d) 10

(e) 9

Question 26
[1.5 marks] Which output is produced when the statement print(radix_convert_to_Dec(31, 4)) is executed?

(a) 12

(b) 11

(c) 14

(d) 10

(e) 13

Question 27
[1.5 marks] Which output is produced when the statement print(radix_convert_to_Dec(141, 6)) is executed?

(a) 60

(b) 71

(c) 61

(d) 56

(e) 62

5

2017 SS
Question 29
The gcd() function shown below calculates the greatest common divisor of the two input numbers. Notice that a print() statement has been
placed at the very start of the function definition - this will display the inputs for every function call that occurs.

def g(m, n):
 print(m, n, end = ' ')
 if m == n:
 return m
 elif (m > n):
 return g(m-n, n)
 else:
 return g(m, n-m)

If the following call is made:

print('Result =', end = ' ')
g(18, 12)

what output would be produced?

(a) Result = 18 12 6 6
(b) Result = 18 12 8 2 6 2 4 2 2
(c) Result = 18 12 6 4 2 4 2 2
(d) Result = 18 12 12 4 8 4 4 4
(e) Result = 18 12 6 12 6 6

Question 30
What is the efficiency, in terms of n, of the following function (called fib) that calculates the nth number in the Fibonacci sequence?

def fib(n):
 if n <=2:
 return 1
 else:
 return fib(n-1) + fib(n-2)

Question 32
[1.5 marks] Which output is produced when the statement print(Dec_convert_to_radix(24, 3)) is executed?

(a) 222

(b) 221

(c) 210

(d) 220

(e) 211

Question 33
[1.5 marks] Which output is produced when the statement print(Dec_convert_to_radix(37, 4)) is executed?

(a) 222

(b) 212

(c) 220

(d) 221

(e) 211

Question 34
[1.5 marks] Which output is produced when the statement print(Dec_convert_to_radix(141, 11)) is executed?

(a) 119

(b) 121

(c) 116

(d) 118

(e) 117

6

(a) O(log n)

(b) O(n)

(c) O(n log n)

(d) O(2n)

(e) O(n2)

2016S2
Question 26
[2 marks] Consider the following recursive function definition.

def recursive_function1(s):
 if len(s) == 1:
 return int(s) * 1
 else:
 return int(s[0]) * 2 ** (len(s) - 1) + recursive_function1(s[1:])

What would be the output of the following function call?

print(recursive_function1("10110"))

(a) 6

(b) Infinite recursion

(c) 14

(d) 22

(e) None of the above.

Question 27
 [2 marks] What is the efficiency, in terms of n, of the following function (hanoi) that solves a Towers of Hanoi puzzle with n discs?

def hanoi(n, source, destination, spare):
 if n <= 1:
 print("base case: move disk from", source, "to", destination)
 else:
 hanoi(n - 1, source, spare, destination)
 print("move disk from", source, "to", destination)
 hanoi(n - 1, spare, destination, source)

(a) O(n)

(b) O(n2)

(c) O(2n)

(d) O(log n)

(e) O(n log n)

Question 28
[2 marks] Consider the following list below:

If we were to use the binary_search() function discussed in lectures to search for the value 5 in this list, how many calls to the
binary_search() function would be made in total (including the top level call)?

(a) 0

(b) 3

(c) 5

(d) 4

(e) None of the above

7

Question 29
[2 marks] A palindrome is a sequence of characters that reads the same backward and forward. The following recursive function,
make_palindrome(), takes a string as a parameter and returns a palindrome by combining the string with a reversed copy of itself. You can
assume that the string parameter will have a length of at least 1. For example:

make_palindrome("2016")

would return the string "20166102".

The code for the make_palindrome() function is provided below. The "else" block of the function definition is missing, and has been replaced
with ????.

def make_palindrome(s):
 if len(s) == 1:
 return s + s
 else:
 ????

Which statement should replace the ???? above to correctly complete this recursive function definition?

(a) return s + s[len(s) - 1::-1]
(b) return make_palindrome(s[1:]) + s[0]
(c) return s[0] + make_palindrome(s[1:len(s) - 1]) + s[len(s) - 1]
(d) return make_palindrome(s[:len(s) – 1]) + s[len(s) – 1]
(e) return s[0] + make_palindrome(s[1:]) + s[0]

Question 30
[2 marks] Given the recursive function below, what is the value returned by

recursive_function2(3,4)?

def recursive_function2(num1,num2):
 if num1 == 1 and num2 == 1:
 return 1
 else:
 return num1 * num2 * recursive_function2(num1 - 1, num2 - 2)

(a) 1

(b) 48

(c) Infinite recursion

(d) 12

(e) 0

