2018 SS

Question 25

[1 mark] Which of the following is not an important property of a recursive function?
(a) A recursive function must be more efficient than using a loop
(b) A recursive function calls itself in its definition
(c) A recursive function contains a base case that enables recursive calls to stop
(d) Each recursive function call solves an identical but smaller problem
(e) None of the above

Question 26

[1 mark] Consider the following recursive function definition:

```
def hailstone(value):
    print(value, end = ' ')
    if(value == 1):
        return
    elif(value % 2 == 0):
        hailstone(value // 2)
    elif(value % 2 == 1):
        hailstone(value*3 + 1)
```

What would be the output of the following code?
hailstone(5)
(a) 524126321
(b) 58421
(c) 168421
(d) 5168421
(e) None of the above

Question 27

[1 mark] Consider the following recursive function definition:

```
def fun(a,b):
    if a == b:
        return a
    else:
        return a + fun(a+1, b)
```

What would be the output of the following function call?
print(fun(3,9))
(a) 30
(b) 42
(c) 33
(d) 39
(e) None of the above

Question 28

[1 mark] What is the Big-O time complexity of the following function (fib) that calculates the $n^{\text {th }}$ number in the Fibonacci sequence?

```
def fib(n):
    if n <= 2:
        return 1
    else: return fib(n-1) + fib(n-2)
```

(a) $\mathrm{O}\left(2^{\mathrm{n}}\right)$
(b) $\mathrm{O}\left(\mathrm{n}^{2}\right)$
(c) $\mathrm{O}(\mathrm{n})$
(d) $\mathrm{O}(\log \mathrm{n})$
(e) None of the above

Question 29

[1.5 marks] Consider the following recursive function definition:

```
def print_recursive(s):
    if len(s) == 0:
        print('Complete', end = ' ')
    else:
        print(s[-1], end = ' ')
        print_recursive(s[0:-1])
```

What would be the output of the following function call?
print_recursive('cs105')
(a) Complete 501 s c
(b) Complete c s 105
(c) c s 105 Complete
(d) 501 s c Complete
(e) None of the above

Question 30

[1.5 marks] The following recursive function, sum_list (), takes in a list of integers and returns the sum of these values. The else block definition is missing and has been replaced with '???'

```
def sum_list(values):
    if len(values) == 0:
        return 0
    else:
        ???
```

Which statement should replace the '???' to correctly complete the function definition?
(a) return values[-1] + sum_list(values[1:])
(b) return values[0] + sum_list(values[:-1])
(c) return values[-1] + sum_list(values[:-1])
(d) return values[1] + sum_list(values[1:])
(e) None of the above

2017 S2

Question 19
[2 marks] Consider the following recursive function definition.

```
def exam_function(number):
    if number > 0:
        remainder = number % 2
        digit = str(remainder)
        return exam_function(number // 2) + digit
    else:
        return ""
```

What would be the output of the following function call?
print(exam_function(37))
(a) Infinite recursion.
(b) 101001
(c) 100101
(d) 010110
(e) None of the above.

If we were to use the binary_search() function discussed in lectures to search for the value $\mathbf{5 3}$ in this list, how many calls to the binary_search() function would be made in total (including the top level call)?
(a) 3
(b) 4
(c) 5
(d) 2
(e) None of the above.

Question 21

[2 marks] Which of the following statements is TRUE?
I A recursive solution to a problem is always preferable.
II A recursive function calls itself.
III Each recursive call diminishes the size of the problem.
IV A recursive function can have one or more base cases.
V A recursive function can have one or more recursive steps.
(a) II, III and IV
(b) I, II and V
(c) II, IV and V
(d) I, II, III, IV and V
(e) II, III, IV and V

Question 22

[2 marks] The remove_vowel() function takes a string as a parameter and returns the string with all vowels removed. For example:
remove_vowel("television")
would return the string "tlvsn".
The code for the remove_vowel() function is provided below. The "if" block of the function definition is missing, and has been replaced with ????.

```
def remove_vowel(a_string):
    vowels = ["a","e","i","o","u"]
    for i in range(len(a_string)):
        if a_string[i] in vowels:
            ????
    return a_string
```

Which statement should replace the ???? above to correctly complete this recursive function definition?
(a) return remove_vowel(a_string[:i]) + a_string[i+1:]
(b) return a_string[i] + remove_vowel(a_string[:i] + a_string[i+1:])
(c) return a_string[i] + remove_vowel(a_string[i+1:])
(d) return a_string[:i] + remove_vowel(a_string[i+1:])
(e) None of the above.

Question 37

a) In mathematics, the Pell numbers are an infinite sequence of integer values. The first 6 Pell numbers are $0,1,2,5,12$, and 29. The Pell numbers can be defined recursively as follows:

$$
\operatorname{pell}(n)= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ 2 * \operatorname{pell}(n-1)+\operatorname{pell}(n-2) & \text { if } n>1\end{cases}
$$

In other words, the sequence of Pell numbers starts with 0 and 1 , and then each Pell number is the sum of twice the previous Pell number and the Pell number before that.

Complete the pell() function below that takes a single integer parameter n , and returns the $\mathrm{n}^{\text {th }}$ Pell number in the sequence. The pell() function must be implemented recursively using the provided definition.

```
def pell(n):
```


2017 S1

The following 3 questions use the radix_convert_to_Dec(num, radix) function below:

```
def radix_convert_to_Dec(num, radix):
    a = num // 10
    b = num % 10
    if (a > 0):
        result = b + radix * radix_convert_to_Dec(a, radix)
    else:
        result = b
    return result
```

Question 25
[1.5 marks] Which output is produced when the statement print (radix_convert_to_Dec (111, 2)) is executed?
(a) 11
(b) 7
(c) 3
(d) 10
(e) 9

Question 26
[1.5 marks] Which output is produced when the statement print (radix_convert_to_Dec (31, 4)) is executed?
(a) 12
(b) 11
(c) 14
(d) 10
(e) 13

Question 27
[1.5 marks] Which output is produced when the statement print (radix_convert_to_Dec (141, 6)) is executed?
(a) 60
(b) 71
(c) 61
(d) 56
(e) 62

The following 3 questions use the Dec_convert_to_radix (num, radix) function below:

```
def Dec_convert_to_radix(num, radix):
```

a = num // radix
b = num \% radix
if (a > 0): result = b + 10 * Dec_convert_to_radix(a, radix)
else:
result = b
return result

Question 32

[1.5 marks] Which output is produced when the statement print (Dec_convert_to_radix (24, 3)) is executed?
(a) 222
(b) 221
(c) 210
(d) 220
(e) 211

Question 33

[1.5 marks] Which output is produced when the statement print (Dec_convert_to_radix $(37,4)$) is executed?
(a) 222
(b) 212
(c) 220
(d) 221
(e) 211

Question 34
[1.5 marks] Which output is produced when the statement print (Dec_convert_to_radix (141, 11)) is executed?
(a) 119
(b) 121
(c) 116
(d) 118
(e) 117

2017 SS

Question 29
The $\operatorname{gcd}()$ function shown below calculates the greatest common divisor of the two input numbers. Notice that a print () statement has been placed at the very start of the function definition - this will display the inputs for every function call that occurs.

```
def g(m, n):
    print(m, n, end = ' ')
    if m == n:
        return m
    elif (m > n):
        return g(m-n, n)
    else:
        return g(m, n-m)
```

If the following call is made:
print('Result =', end = ' ')
g(18, 12)
what output would be produced?
(a) Result $=181266$
(b) Result = 18128262422
(c) Result $=1812642422$
(d) Result = 18121248444
(e) Result = 181261266

Question 30

What is the efficiency, in terms of n, of the following function (called fib) that calculates the $n^{\text {th }}$ number in the Fibonacci sequence?

```
def fib(n):
    if n <=2:
            return 1
    else:
            return fib(n-1) + fib(n-2)
```

(a) $O(\log n)$
(b) $\mathrm{O}(\mathrm{n})$
(c) $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
(d) $\mathrm{O}\left(2^{\mathrm{n}}\right)$
(e) $\mathrm{O}\left(\mathrm{n}^{2}\right)$

2016S2

Question 26
[2 marks] Consider the following recursive function definition.

```
def recursive_function1(s):
    if len(s)== 1:
        return int(s) * 1
    else:
        return int(s[0]) * 2 ** (len(s) - 1) + recursive_function1(s[1:])
```

What would be the output of the following function call?
print(recursive_function1("10110"))
(a) 6
(b) Infinite recursion
(c) 14
(d) 22
(e) None of the above.

Question 27
[2 marks] What is the efficiency, in terms of n, of the following function (hanoi) that solves a Towers of Hanoi puzzle with n discs?

```
def hanoi(n, source, destination, spare):
    if n <= 1:
        print("base case: move disk from", source, "to", destination)
    else:
        hanoi(n - 1, source, spare, destination)
        print("move disk from", source, "to", destination)
        hanoi(n - 1, spare, destination, source)
```

(a) $\mathrm{O}(\mathrm{n})$
(b) $\mathrm{O}\left(\mathrm{n}^{2}\right)$
(c) $\mathrm{O}\left(2^{\mathrm{n}}\right)$
(d) $O(\log n)$
(e) $O(n \log n)$

Question 28
[2 marks] Consider the following list below:

If we were to use the binary_search() function discussed in lectures to search for the value $\mathbf{5}$ in this list, how many calls to the binary_search() function would be made in total (including the top level call)?
(a) 0
(b) 3
(c) 5
(d) 4
(e) None of the above

Question 29

[2 marks] A palindrome is a sequence of characters that reads the same backward and forward. The following recursive function,
make_palindrome(), takes a string as a parameter and returns a palindrome by combining the string with a reversed copy of itself. You can assume that the string parameter will have a length of at least 1 . For example:
make_palindrome("2016")
would return the string "20166102".
The code for the make_palindrome() function is provided below. The "else" block of the function definition is missing, and has been replaced with ????.
def make_palindrome(s):
if len(s) == 1:

```
            return s + s
```

else:
????
Which statement should replace the ???? above to correctly complete this recursive function definition?
(a) return $s+s[l e n(s)-1::-1]$
(b) return make_palindrome(s[1:]) + s[0]
(c) return s[0] + make_palindrome(s[1:len(s) - 1]) + s[len(s) - 1]
(d) return make_palindrome(s[:len(s) - 1]) + s[len(s) - 1]
(e) return s[0] + make_palindrome(s[1:]) + s[0]

Question 30

[2 marks] Given the recursive function below, what is the value returned by

```
recursive_function2(3,4)?
def recursive_function2(num1,num2):
    if num1 == 1 and num2 == 1:
            return 1
    else:
        return num1 * num2 * recursive_function2(num1 - 1, num2 - 2)
```

(a) 1
(b) 48
(c) Infinite recursion
(d) 12
(e) 0

