
727 Crypto Management

Lecture 12
GIOVANNI RUSSELLO

G.RUSSELLO@AUCKLAND.AC.NZ

Key Distribution with Asymmetric
Encryption
Merkle’s Scheme

A generates (PU_A, PR_A), B generates (PU_B, PR_B), K_s

A -> B: PU_A || ID_A

B: generates K_s

B -> A: E(PU_A, K_s)

A & B discard (PU_A, PR_A), (PU_B, PR_B)

After connection is closed discard K_s

Key Distribution with Asymmetric
Encryption - Issue

A E BPU_A||ID_A
PU_E||ID_A

K_sE(PU_E, K_s)

E(PU_A, K_s)
K_s

K_s

E can decrypt any message protected with K_s

Key Distribution with Confidentiality and
Authentication
Assume that A and B already have securely exchanged PU_A, and PU_B

A -> B: E(PU_B, (N_1||ID_A))

B -> A: E(PU_A, (N_1||N_2))

A -> B: E(PU_B, N_2)

A -> B: E(PU_B, E(PR_A, K_s))

B uses PU_A to retrieve K_s

Key Distribution with Confidentiality and
Authentication
Assume that A and B already have securely exchanged PU_A, and PU_B

A -> B: E(PU_B, (N_1||ID_A)) <- N_1 is used for uniquely identify this transaction

B -> A: E(PU_A, (N_1||N_2))

A -> B: E(PU_B, N_2)

A -> B: E(PU_B, E(PR_A, K_s))

B uses PU_A to retrieve K_s

Key Distribution with Confidentiality and
Authentication
Assume that A and B already have securely exchanged PU_A, and PU_B

A -> B: E(PU_B, (N_1||ID_A))

B -> A: E(PU_A, (N_1||N_2)) <- N_1 assures A that the correspondent is B because only B could
have decrypted the message

A -> B: E(PU_B, N_2)

A -> B: E(PU_B, E(PR_A, K_s))

B uses PU_A to retrieve K_s

Key Distribution with Confidentiality and
Authentication
Assume that A and B already have securely exchanged PU_A, and PU_B

A -> B: E(PU_B, (N_1||ID_A))

B -> A: E(PU_A, (N_1||N_2))

A -> B: E(PU_B, N_2) <- N_2 ensures B that A is the correspondent

A -> B: E(PU_B, E(PR_A, K_s))

B uses PU_A to retrieve K_s

Key Distribution with Confidentiality and
Authentication
Assume that A and B already have securely exchanged PU_A, and PU_B

A -> B: E(PU_B, (N_1||ID_A))

B -> A: E(PU_A, (N_1||N_2))

A -> B: E(PU_B, N_2)

A -> B: E(PU_B, E(PR_A, K_s)) <- (1) Only B can read this message; (2) Only A could have
encrypted K_s

B uses PU_A to retrieve K_s

Hybrid Scheme
IBM introduced a hybrid scheme for their mainframes where both symmetric and asymmetric
systems are used

The scheme retains the use of KDC and use a public-key system for distributing the master keys

The main advantages are:
◦ Performance: given that master keys are not refreshed often the penalty of using asymmetric

encryption is not that high
◦ Backwards compatibility: the hybrid scheme can be still used on existing symmetric only systems using a

KDC with minimal changes

Public-Key Distribution
Several schemes have been proposed
◦ Public announcement
◦ Publicly available directory
◦ Public-key authority
◦ Public-key certificates

Public Announcement
Public-key main feature is that it is public

Users can announce and distribute their public-key to other users

Typical scenario is in PGP where users attach their public-keys to their messages

Main drawback
◦ Anyone can forge the announcement and impersonate a valid user
◦ Until the valid user A notifies the others users then the impostor can read all the messages sent from

the other users intended to A

Publicly Available Directory
A trusted authority or organisation maintains a table with (ID, PU) pairs

Participants would need to register with the authority either in person or through a secure
authenticated communication

A participant has the right to change the public-key at any time

Users can query the directory for a public-key entry by specifying the user’s id (it could be an
email address)

Main issue here is to maintain the directory secure
◦ An adversary could subvert the authority and send out fake public-key impersonating the participants

Public-Key Authority
This is the case of a directory with more strict security

Each participants knows the public-key of the authority
◦ The authority is responsible to keep its private-key secure

A -> PA: request||T_1

PA -> A: E(PR_PA, (PU_B||request||T_1))

A -> B: E(PU_B, (ID_A, N_1))

B ->PA: request||T_2

PA -> B: E(PR_PA, (PU_A||request||T_2))

B -> A: E(PU_A, (N_1||N_2))

A -> B: E(PU_B, N_2)

Public-Key Authority
This is the case of a directory with more strict security

Each participants knows the public-key of the authority
◦ The authority is responsible to keep its private-key secure

A -> PA: request||T_1

PA -> A: E(PR_PA, (PU_B||request||T_1)) <- The use of PR_PA ensures A the PA generated the response

A -> B: E(PU_B, (ID_A, N_1))

B ->PA: request||T_2

PA -> B: E(PR_PA, (PU_A||request||T_2))

B -> A: E(PU_A, (N_1||N_2))

A -> B: E(PU_B, N_2)

Public-Key Authority
This is the case of a directory with more strict security

Each participants knows the public-key of the authority
◦ The authority is responsible to keep its private-key secure

A -> PA: request||T_1

PA -> A: E(PR_PA, (PU_B||request||T_1)) <- The original request allows A to verify that his
message was not altered by the PA

A -> B: E(PU_B, (ID_A, N_1))

B ->PA: request||T_2

PA -> B: E(PR_PA, (PU_A||request||T_2))

B -> A: E(PU_A, (N_1||N_2))

A -> B: E(PU_B, N_2)

Public-Key Authority
This is the case of a directory with more strict security

Each participants knows the public-key of the authority
◦ The authority is responsible to keep its private-key secure

A -> PA: request||T_1

PA -> A: E(PR_PA, (PU_B||request||T_1)) <- T_1 allows A to determine this is not an old message

A -> B: E(PU_B, (ID_A, N_1))

B ->PA: request||T_2

PA -> B: E(PR_PA, (PU_A||request||T_2))

B -> A: E(PU_A, (N_1||N_2))

A -> B: E(PU_B, N_2)

Public-Key Authority
This is the case of a directory with more strict security

Each participants knows the public-key of the authority
◦ The authority is responsible to keep its private-key secure

A -> PA: request||T_1

PA -> A: E(PR_PA, (PU_B||request||T_1))

A -> B: E(PU_B, (ID_A, N_1))

B ->PA: request||T_2

PA -> B: E(PR_PA, (PU_A||request||T_2))

B -> A: E(PU_A, (N_1||N_2)) <- N_1 ensures A that the message is coming from B

A -> B: E(PU_B, N_2)

Public-Key Authority
This is the case of a directory with more strict security

Each participants knows the public-key of the authority
◦ The authority is responsible to keep its private-key secure

A -> PA: request||T_1

PA -> A: E(PR_PA, (PU_B||request||T_1))

A -> B: E(PU_B, (ID_A, N_1)) <- Only B could have decrypted this message and retrieve N_1

B ->PA: request||T_2

PA -> B: E(PR_PA, (PU_A||request||T_2))

B -> A: E(PU_A, (N_1||N_2))

A -> B: E(PU_B, N_2)

Public-Key Authority
This is the case of a directory with more strict security

Each participants knows the public-key of the authority
◦ The authority is responsible to keep its private-key secure

A -> PA: request||T_1

PA -> A: E(PR_PA, (PU_B||request||T_1))

A -> B: E(PU_B, (ID_A, N_1))

B ->PA: request||T_2

PA -> B: E(PR_PA, (PU_A||request||T_2))

B -> A: E(PU_A, (N_1||N_2))

A -> B: E(PU_B, N_2) <- N_2 ensures B that A is the corresponding party

Public-Key Authority
This is the case of a directory with more strict security

Each participants knows the public-key of the authority
◦ The authority is responsible to keep its private-key secure

A -> PA: request||T_1

PA -> A: E(PR_PA, (PU_B||request||T_1))

A -> B: E(PU_B, (ID_A, N_1))

B ->PA: request||T_2

PA -> B: E(PR_PA, (PU_A||request||T_2))

B -> A: E(PU_A, (N_1||N_2)) <- Only A could have decrypted this message

A -> B: E(PU_B, N_2)

Public-Key Authority
This is the case of a directory with more strict security

Each participants knows the public-key of the authority
◦ The authority is responsible to keep its private-key secure

A -> PA: request||T_1

PA -> A: E(PR_PA, (PU_B||request||T_1))

A -> B: E(PU_B, (ID_A, N_1))

B ->PA: request||T_2

PA -> B: E(PR_PA, (PU_A||request||T_2))

B -> A: E(PU_A, (N_1||N_2))

A -> B: E(PU_B, N_2)

These 5 steps are executed
infrequently because A and B
can cache each other keys

Public-Key Certificates
The PA still represents a bottleneck in the system and shares pretty much the same security
issues as the public directory

As an alternative, Kohnfelder suggested in 1978 the idea of using digital certificates
◦ Allows participants to share public-key securely without involving a PA
◦ But with the same level of reliability

Simply put, a certificate consists of a (owner ID, the public-key)-pair signed with the private key
of a trusted certificate authority (e.g., Comodo, Symantec, etc)

The user presents her public key to the CA in a secure way and then gets back the certificate
that can be published

Anyone obtaining the certificate can retrieve the public key of a user and use the digital
signature on the certificate to verify that is valid

PK Certificate Requirements
1. Any user reading the certificates is able to determine the name and PK of the certificate

owner

2. Any user can verify that the certificate originates from the CA and is not counterfeit

3. Only the CA can create and update the certificates

4. Any user can verify the currency of a certificate

	727 Crypto Management��Lecture 12
	Key Distribution with Asymmetric Encryption	
	Key Distribution with Asymmetric Encryption	- Issue
	Key Distribution with Confidentiality and Authentication
	Key Distribution with Confidentiality and Authentication
	Key Distribution with Confidentiality and Authentication
	Key Distribution with Confidentiality and Authentication
	Key Distribution with Confidentiality and Authentication
	Hybrid Scheme
	Public-Key Distribution 	
	Public Announcement
	Publicly Available Directory
	Public-Key Authority
	Public-Key Authority
	Public-Key Authority
	Public-Key Authority
	Public-Key Authority
	Public-Key Authority
	Public-Key Authority
	Public-Key Authority
	Public-Key Authority
	Public-Key Certificates
	PK Certificate Requirements

