
Compsci 225 Lecturer: Padraic Bartlett

Chapter 1: Introduction / Proofs
Weeks 1-2 UoA 2018

Welcome to Compsci 225! This is a set of typeset notes that are
meant to serve as a companion to the lectures this term. Think of
them as a slightly “remixed” version of the coursebook; in these
notes, you’ll find the same concepts as in the coursebook, but with
new examples and a bit more detail in the proofs.

If you have any questions, please email me at

padraic.bartlett@auckland.ac.nz

In particular, let me know if you spot any typos! I’ll do my best to
avoid them, but given that I am writing these notes simultaneously
with the lectures, some will certainly creep in over time. (As a
tiny incentive, I’ll give the first person to spot any mathematical
typo a chocolate fish! Email me to claim your reward whenever
you spot such a typo.)

1.1 What Is Mathematics?

Compsci 225 (as stated in on the opening slides) is a course on
mathematics. So, let’s start from the basics: what is mathemat-
ics?

If you ask1 a random person on the street what they think math-
ematics is, I’d bet that they would say something like this:

“Mathematics is how you calculate things.”

In other words, most people in the world think mathematics, more
or less, is a field in which you learn how to solve equations: i.e. a
field in which you just write stuff like

1 + 1 = 2,
√

529 = 23,

x2 − 9x+ 20 = (x− 4)(x− 5), and∫ 3

−3

3
√
x

3
√

3− x+ 3
√

3 + x
dx = 0

They’re not wrong! Mathematics certainly involves lots of cal-
culations, and in this class you’ll learn how to calculate lots of
things:

• The prime factors of any integer,

• The chromatic number of a graph,

• The number of ways to choose n objects from k possibilities
with and without repetition, and

• The accepting states of a finite automata, amongst others!

However, if all you know to do is calculate things, you’re doomed
to be essentially a slower and fuzzier version of Wolfram Alpha;
this is not exactly a great thing to aspire to, or a particularly
strong reason to learn mathematics. And yet some level of math-
ematics is required for a major in almost any subject under the

1Well, first they’d probably look at you funny. But after a minute, I claim
they’d say something like this
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BSc here at Auckland (and indeed, for undergraduate study in al-
most any scientific field at almost any university!) This is because
to most scientists, mathematics isn’t just a bunch of calculational
techniques: instead,

“Mathematics is a tool for solving problems.”

Gauss, one of the most prolific2 scientists of all time, wrote that
“Mathematics is the Queen of the Sciences;” by this, he meant
that the framework and techniques of mathematics are integral
and indispensible to the pursuit of almost every other scientific
field, and that in this sense mathematics “rules” over everything.
This is not an isolated view; the “unreasonable effectiveness of
mathematics” has been something that scientists have been sur-
prised by and relied on for generations.

If you want to launch a rocket, or manage an economy, or design
a processor, you need mathematics.

At the University of Auckland itself, people in the applied math-
ematics unit are producing ground-breaking3 research on pigeon
navigation, modelling calcium flows across cellular membranes,
and earthquakes using mathematics.

Less seriously, you can use mathematics as a tool in lots of day-
to-day things, like playing games! Here’s a problem I encountered
when playing Pokémon last year:

Congratulations; you’re a Pokémon trainer! As such, you
have a Pikachu that you’ve been training so that you can be
the very best4. The land outside of your town is infested
with Spearow; to prepare for the attacks you’ll face when you
leave the town, you’ve been improving your Pikachu’s health
(H) and defense (D) values. You have 200 points to spread

out between these two stats: that is, H +D = 200. When
you leave the town, you know that the number of attacks
you can take from Spearow on the way to the next town is

approximately5 (1100 +H)(500 +D)

60000 + 40D
. What should you

make H and D equal to to maximize the number of attacks
you can handle? What is the maximum number of attacks
you can encounter?

Pretty much every game out there has some sort of mechanic like
the above (try to find one in a game you’re familar with!); while
I don’t recommend that you pull out a graphing calculator in
the middle of a League of Legends match, it’s still a fun way in
which you can see how mathematics is a tool that lets you solve
problems!

Both of these ideas about what mathematics “is” capture some
very important aspects of our field. However, I claim that if you
talk to your maths teachers back in high school, they might come
up with a third definition:

“Mathematics is a language.”

That is: mathematics isn’t just a field in which you learn to do
calculations, it’s one in which you are learning a language, that
lets you describe things accurately and precisely!

That is: when you see an expression like
(1100 +H)(500 +D)

60000 + 40D
,

you know that the long horizontal line means division, and that

2No, really: check out this list of things with Gauss’s name on them.
3In the last case, this is meant quite literally.
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the + symbol refers to addition. You know that you perform the
calculations inside the parentheses before the other calculations,
and that the letters H and D are variables that you could substi-
tute in all sorts of real numbers in for; you also know that D had
better not be equal to − 60000

40 , otherwise the denominator will be
0 and division by 0 is not allowed.

In other words, you know how to translate all of the symbols in
that equation into words and concepts, and moreover know how
those concepts and words interact! You know the “grammar”

of mathematics, which would tell you that something like 5x·(÷3√
+

makes no sense, and that you should always have “+C” at the
end of your indefinite integrals.

Even though most classes you’ll take at University don’t specif-
ically call this out, I would claim that you spend most of your
time in mathematics classes here working with mathematics on
this “language” level! That is: in CS225 and any other math-
ematics class you take, you will see lots of new terms, concepts
and notation. Learning this

https://xkcd.com/435/

language and practicing “speaking” it
(i.e. writing mathematics on your assignments, and working with
each other in tutorials) will be one of the main goals of CS225,
and indeed of any University career in mathematics!

In contrast to the above three ideas of mathematics, however, the
attitude of many research mathematicians to their field is perhaps
best summed up in the XKCD comic at left. To put it a bit more
elegantly:

“Mathematics is the art of abstraction.”

We don’t study mathematics just because we care about rockets
or earthquakes or cells, we study mathematics because6 we care
about mathematics itself! G.H. Hardy, one of the most influen-
tial number theoreticians of all time, described his own work as
follows: “No discovery of mine has made, or is likely to make,
directly or indirectly, for good or ill, the least difference to the
amenity of the world.” This, by the way, was something he was
incredibly proud of; as an Englishman who saw the first world war
he was horrified at what people did by applying the mathemat-
ics of his peers, and prided himself on studying only things that
would never possibly have the same effects on the world.

In this world of abstraction, we study questions like

“How many solutions are there to the equation x2 + y2 = z2,
where x, y, z are integers?”

and

“How many solutions are there to the equation xn + yn = zn,
where n, x, y, z are integers and n ≥ 3?”

These aren’t problems with obvious applications, nor are they
things that we can directly calculate; instead we have to grapple
with these problems in our minds, and come up with clever argu-
ments and constructions that let us see the core of what’s being
asked.

For the first, for instance, the answer is “infinitely many:” if we’re
clever and think about this for a while, you can eventually notice
that for any m,n ∈ Z, x = m2 − n2, y = 2mn gives us7 a pair of

6Though it doesn’t hurt to know about applications, if only so you can
convince people to give you money to let you study more mathematics.

7If you haven’t seen this before: writing x ∈ A is shorthand for saying “x
is an object in the set A.” For example, 1 ∈ N and π ∈ R, but

√
2 6∈ Z.
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values such that

x2 + y2 = (m2 − n2)2 + (2mn)2 =m4 − 2m2n2 + n4 + 4m2n2

=m4 + 2m2n2 + n4

=(m2 + n2)2,

and therefore that setting z = m2 + n2 gives us infinitely many
solutions to this equation.

The answer to the second question, if you’re curious, is that “no
solutions exist.” This result is called Fermat’s Last Theorem; this
problem was first formulated in 1637 by the mathematician Pierre
de Fermat, and proven in 1995 by the mathematician Andrew
Wiles, after 358 years of constant work by mathematicians; this
problem is famous for attracting the largest number of recorded
incorrect solutions of any mathematical theorem, and is one of the
greatest8 feats of human ingenuity in the past century.

With that said, I should clarify a little bit and say that all of these
viewpoints are correct! In other words,

“Mathematics is everything.”

All mathematicians calculate things, all mathematicians use no-
tation and the language of mathematics to describe their results,
all mathematicians either work with applications or eventually
have their work used in applications9, and the art of abstraction
is needed to understand and create almost any truly deep or in-
teresting result.

Throughout this class, we’ll see mathematics in all of these forms.

For the rest of this section, though, I want to start exploring one
idea that’s central to mathematics in any of its guises: the idea of
proof.

1.2 What is a Proof?

Every major field of study in academia, roughly speaking, has a
way of “showing” that something is true. In English, if you wanted
to argue that the whale in Melville’s Moby Dick was intrinsically
tied up with mortality, you would write an essay that quoted
Melville’s story alongside some of of his other writings and perhaps
some contemporary literature, and logically argue (using these
quotations as “evidence”) that your claim holds. Similarly, if you
were a physicist and you wanted to show that the speed of light
is roughly 3.0 · 108 meters per second, you’d set up a series of
experiments, collect data, and see if it supports your claim.

In mathematics, a proof is an argument that mathematicians
use to show that something is true. However, the concepts of
“argument” and “truth” aren’t quite as precise as you might like;
certainly, you’ve had lots of “arguments” with siblings or class-
mates that haven’t proven something is true!

In mathematics, the same sort of thing happens: there are many
arguments that (to an outsider) look like a convincing reason for
why something is true, but fail to live up to the standards of a
mathematician. To help us understand the idea of proof, we look
at two such “failed” proofs here:

8So, just a bit harder than the first question. It is surprising what changing
n = 2 to n ≥ 3 can do to a problem.

9Number theory, while seemingly useless in Hardy’s time, is indispensable
to the entire modern field of cryptography and computer security. While
Hardy was alive, his dream that his work would not have the faintest practical
use was largely intact; at the dawn of the twenty-first century, however, the
opposite is true. The battlefield that most international skirmishes are taking
place on today is online, the weapons of choice are cryptosystems, and it would
be difficult to find a cryptographer alive that hasn’t read Hardy’s work.

4

http://en.wikipedia.org/wiki/Fermat's_Last_Theorem


Claim. The sum of any two odd numbers is even.

“Bad” proof: Well, 1+1 = 2 is even, 3+7 = 10 is even, −13+5 =
−8 is even, and 1001 + 2077 = 3078 is even. Certainly seems to
be true!

2

A defense of the “bad” proof: This might seem like a silly argu-
ment, but suppose we’d listed a thousand examples, or a billion
examples. In most other fields of study, that would be enough to
“prove” a claim! (Think about science labs: there, we prove claims
via experimentation, and any theory you could test a billion times
and get the same result would certainly seem very true!)

Why this proof is not acceptable in mathematics: In mathematics,
however, this isn’t good enough. When we make a claim about
“any” number, or say that something is true for “all” values, we
really mean it: if we have not literally shown that the claim holds
for every possible case, we don’t believe that this is a proof!

This is not just because mathematicians are fussy. In the world of
numbers, there are tons of “eventual” counterexamples out there:

• Consider the following claim: “The sequence of numbers
“12, 121, 1211, 12111, 121111, . . . ” are all not prime10.”

If you were to just go through and check things by hand,
you’d probably be persuaded by the first few entries: 12 =
3 · 4, 121 = 11 · 11, 1211 = 1737̇, 12111 = 367 · 11, 12111 =
431 · 281, . . .

However, when you get to 12

136 1′s︷ ︸︸ ︷
111 . . . 1, that one’s prime! This

is well beyond the range of any reasonable human’s ability
to calculate things, and yet something that could come up
in the context of computer programming and cryptography
(where we make heavy use of 500+ digit primes all the time.)

• Here’s another claim: “For any integer n, the two numbers
n17 + 9 and (n+ 1)17 + 9 have no factors11 in common.”

For example, when n = 0 this claim says that (017 + 9) = 9
and (0 + 1)17 + 9 = 10 have no factors in common, which
is true: 9 = 3 · 3 and 10 = 2 · 5. Similarly, when n = 1
this says that 117 + 9 = 10 and (1 + 1)17 + 9 = 131081 have
no factors in common; this is also true, as 10 = 2 · 5 while
131081 = 19 · 6899 (which are both primes, and so we can’t
break this down further.)

This gets hard for humans to calculate very quickly, so I’ll
spare you any more calculations and skip to the punchline:
this pattern holds for all n until n = 8424432925592889329288197322308900672459420460792433,
where it fails.

• In general, mathematics is full of things like this!

Instead, I claim that a “good” proof of this claim would go as
follows:

Claim. The sum of any two odd numbers is even.

Proof. Take any two odd numbers N,M . By definition, because
N and M are odd, we can write N = 2k + 1 and M = 2l + 1, for
two integers k, l.

10A positive integer is prime if it only has two positive integer factors: 1
and itself. For example, 2, 3, 5, 7, 11, 13 are all prime, while numbers like
4,6,8,9,10,. . . are all not prime. Note that 1 is not prime, as it doesn’t have
two positive integer factors: it only has one such factor, namely itself!

11So, if one of those numbers was a multiple of 3, the other one wouldn’t
be; if one was even, the other would be odd, that kind of thing.
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Therefore, N+M = (2k+1)+(2l+1) = 2k+2l+2 = 2(k+ l+1).
In particular, this means that N +M is an even number, as we’ve
written it as a multiple of 2!

Here are some key aspects of this “better” proof, to consider when
writing your own proofs:

• We worked in general : that is, we didn’t just look at a few
examples, but instead considered arbitrary values!

• We defined our variables, and described what sets they come
from.

• We used words to describe what we were doing and why it
worked!

Here’s another way in which a proof might “fail” us:

Claim. Given any two nonnegative real numbers x, y, we have
x+y

2 ≥ √xy.

“Bad” proof: √
xy ≤ x+ y

2

xy ≤ (x+ y)2

4

4xy ≤ (x+ y)2

4xy ≤ x2 + 2xy + y2

0 ≤ x2 − 2xy + y2

0 ≤ (x− y)2.
2

A defense of the “bad” proof: We’re not using examples; we’re
working in general! Also, we totally showed that this claim is
true: after all, we started with our claim and turned it into a true
thing!

Why this proof is not acceptable in mathematics:

• We have no idea what x and y are! In particular, by plugging
in some sample values of x and y, we can see that this is
sometimes true and sometimes false: for x = 1, y = 4 we
do indeed have

√
xy =

√
4 = 2 ≤ 1+4

2 = 2.5, but for x =

−1, y = −1 the claim
√

(−1) · (−1) ≤ −1−1
2 is very false,

as −1 6≤ 1! So, to do anything here, we first need to know
what x and y are. That is: we need to define what set x, y
come from!

• This proof is “backwards:” that is, it starts by assuming
our claim is true, and from there gets to a true statement.
This is not a logically sound way to make an argument! For
example, if we assume that 1=2, we can easily deduce a true
statement by multiplying both sides by 0:

1 = 2

⇒0 · 1 = 0 · 2
⇒0 = 0.

This doesn’t prove that 1=2, though! As we said above,
proofs need to start with true things, and then through
argument get to what you’re trying to show.

• Finally, this proof has no words! This flaw in some sense is
why the other two flaws could exist: if you had to write out
in words what x and y were, and how you went from one
line to the next, it would probably become clear that this
proof was written backwards and also that we have to be
careful with what x, y are allowed to be.
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This sort of thing is often easy to fix, though! If your proof is
“backwards,” simply try starting from the end and reasoning your
way backwards to the start. If your logic was flawed, somewhere
along the way you’ll encounter a nonreversible step.

For example, if we tried to reverse our proof that 1 = 2, we could
go from 0 = 0 to 0 · 1 = 0 · 2, but would see that we can’t “divide
by 0” to get to the desired conclusion (and thus that this doesn’t
work.)

With this in mind, let’s try a “fixed” version of this proof:

Theorem 1. (The arithmetic mean-geometric mean inequality.)
For any two nonnegative real numbers x, y, we have that the ge-
ometric mean of x and y is less than or equal to the arithmetic
mean of x and y: in other words, we have that

√
xy ≤ x+ y

2
.

Proof. Take any pair of nonnegative real numbers x, y. We know
that any squared real number is nonnegative: so, in specific, we
have that the square of x−y, (x−y)2 is nonnegative. If we take the
equation 0 ≤ (x− y)2 and perform some algebraic manipulations,
we can deduce that

0 ≤ (x− y)2

⇒ 0 ≤ x2 − 2xy + y2

⇒ 4xy ≤ x2 + 2xy + y2

⇒ 4xy ≤ (x+ y)2

⇒ xy ≤ (x+ y)2

4
.

Because x and y are both nonnegative, we can take square roots
of both sides to get

√
xy ≤ |x+ y|

2
.

Again, because both x and y are nonnegative, we can also remove
the absolute-value signs on the sum x+ y, which gives us

√
xy ≤ x+ y

2
,

which is what we wanted to prove.

1.3 The Language of Proof: Propositional Logic

While the two examples and nonexamples of proofs above are good
for getting a “gut feeling” for mathematical proof, to actually
write proofs we’ll need to build up some language and concepts.
To do this, let’s start with the fundamentals:

Definition. A proposition (or statement, or claim) is just some-
thing that is either true or false. For example, the following are
propositions:

• P =“Every even number greater than 2 can be expressed
as the sum of at most six primes” is a proposition; this one
happens to be true (a result in number theory, proven in
1995 by the French mathematician Olivier Ramaré.)

• Q = “Every even number can be expressed as the sum of two
primes” is another proposition; this one is false, as the num-
ber 2 cannot be expressed as the sum of two other primes
(as there are no prime numbers smaller than 2.)
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• R = “Every even number greater than 2 can be expressed
as the sum of two primes” is a third proposition; this is
Goldbach’s conjecture, a famous open problem in number
theory. It is either true or false, but mathematicians have
not yet discovered which.

Conversely, the following are not propositions:

• P =“What color is this pen?” This propositions evaluates
to a color (i.e. “green,” “red”) and not something that is
true or false.

• Q = “This sentence is false.” This propositions is a paradox
(if it were true, it would be false, and if it were false, it would
be true), and so we cannot assign it a single truth value.

• R = “Hello!” This propositions doesn’t evaluate to true or
false; it’s just a declaration.

Often, we will work with mathematical propositions that depend
on a variable. For example, we can write

P (n) = “A n× n checkerboard can be covered by nonoverlapping 2× 1 dominoes;”

this statement will be false for odd values of n, and true for even
values of n (if you don’t see why, prove this!)

Definition. Given some propositions, we will often want ways to
combine them into new propositions. The following list contains
some of the most common combinations:

1. Given two mathematical propositions P and Q, we will of-
ten want to form the mathematical proposition “P and Q”,
denoted P ∧Q. This denotes the mathematical proposition
that is true precisely whenever both of P and Q are true,
and is false otherwise.

2. Given two propositions P and Q, we can form the mathe-
matical proposition “P or Q”, denoted P ∨Q. This denotes
the mathematical proposition that is false if and only if both
P and Q are false, and is true otherwise.12

3. Given a proposition P , we can formulate the mathemati-
cal proposition “not-P ,” which we denote ¬P . This is the
mathematical proposition that is false whenever P is true,
and true whenever P is false.

4. Given two propositions P and Q, we can form the mathe-
matical proposition “P is equivalent to Q”, denoted P ⇔ Q.
This denotes the mathematical proposition that is true when
P and Q are equal (i.e. both true or both false), and false
when P and Q are different (i.e. exactly one is true and the
other is false.)

5. Given two propositions P and Q, we can form the mathe-
matical proposition “P implies Q”, denoted P ⇒ Q. This
proposition is equivalent to the claim that “if P is true, then
Q must be true as well.” In particular, we say that P ⇒ Q
is false whenever P is true while Q is false (as this would
break the claim “if P is true, then Q must be true as well,”)
and is true otherwise.

In particular, notice that if P is false, P ⇒ Q will evaluate
to true no matter what Q is. This allows us to say that

12In mathematics, we almost always assume that our “or” is an inclusive-
or: i.e. it is true when either P or Q is true, or even when both P and Q are
true.
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propositions like “If I am a purple elephant, then six is an
odd number” are true13. This is because if the P part is
false, it doesn’t matter whether the Q part is complete non-
sense or not; our implication is automatically true! This is
probably one of the harder things to get a grasp on, so take
some time to absorb this.

We call propositions made by combining together other proposi-
tions in these ways compound propositions. Using these op-
erations, we can create quite complicated logical statements —
things like ¬((¬P ) ∧ (¬Q)) or ¬(P → (¬Q)).

Sometimes we will want to study these objects formally on their
own, i.e. without having to worry about what the propositions
P,Q actually mean. To do this, we will often just define some
propositional variables14 p, q, r as arbitrary elements of the set
{T, F}, and make truth tables:

Definition. Given a compound proposition P in the proposi-
tional variables p1, . . . pk, a truth table for P is a listing of all
of the possible ways to assign the variables p1, . . . pk to values
in {T, F}, along with a corresponding value for P for each such
assignment.

One of the main uses of a truth table is to determine when two
compound propositions are logically equivalent:

Definition. We say that two compound propositions P,Q are
logically equivalent if P and Q’s truth values are always the
same, no matter what truth values we assign to their propositional
variables.

Equivalently, P and Q are equivalent if when we construct a truth
table for P and Q, their columns are equal.

To illustrate this idea, here are a few examples:

Question. Construct a truth table for the propositions A : ¬(p∧
q) and B : ((¬p) ∧ (¬q)). Are A and B equivalent?

Solution: Here’s a truth table!

p q p ∧ q ¬(p ∧ q) ¬p ¬q (¬p) ∧ (¬q)
T T T F F F F
T F F T F T F
F T F T T F F
F F F T T T T

(Notice how we put in parts of each compound proposition
into our truth table; this can help you correctly put in the
right truth values for the entire compound proposition.)

Because the highlighted columns have different truth values,
their corresponding propositions are not logically equivalent.

Question. Construct truth tables for the two statements p∧(q∨r)
and (p ∧ q) ∨ (p ∧ r). Are they logically equivalent?

13Provided we are not purple elephants.
14When we are describing a compound proposition made out of proposi-

tional variables instead of proper mathematical statements, we’ll sometimes
replace the symbols ⇒ and ⇔ with → and ↔. The only reason we do this is
to help the reader distinguish between compound statements made out of ac-
tual mathematical claims, versus compound statements made out of variables
from {T, F}.
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Solution: We draw another truth table:

p q r q ∨ r p ∧ (q ∨ r) p ∧ q p ∧ r (p ∧ q) ∨ (p ∧ r)
0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 1

Because the highlighted columns have the same truth values,
their corresponding propositions are logically equivalent!

By using these techniques, you can prove that the following state-
ments are logically equivalent. Give a few of them a try for prac-
tice!

¬¬p ⇔ p Double negation

p ∧ q
p ∨ q

⇔
⇔

q ∧ p
q ∨ p

}
Commutative laws

p ∧ (q ∧ r)
p ∨ (q ∨ r)

⇔
⇔

(p ∧ q) ∧ r
(p ∨ q) ∨ r

}
Associative laws

p ∧ (q ∨ r)
p ∨ (q ∧ r)

⇔
⇔

(p ∧ q) ∨ (p ∧ r)
(p ∨ q) ∧ (p ∨ r)

}
Distributive laws

p ∧ p
p ∨ p

⇔
⇔

p
p

}
Idempotent laws

¬(p ∧ q)
¬(p ∨ q)

⇔
⇔

¬p ∨ ¬q
¬p ∧ ¬q

}
De Morgan’s laws

p → q
p → q

⇔
⇔

¬p ∨ q
¬(p ∧ ¬q)

}
Implication laws

1.4 Proof Techniques

Earlier in these notes, we talked about what it means for a math-
ematical statement to be a proof ; since then, we’ve looked at
some promising examples and nonexamples of proofs, and built
up some language for how to approach the idea of a proof. In this
section, we’re going to continue this process and introduce several
useful mathematical techniques for how to approach a proof!

We start with the most ‘straightforward’ proof method:

1.4.1 Direct Proofs

To prove that a given claim is true, the most straightforward path
is typically the following:

• Write down things that you know are true that relate to
your claim. This typically includes the definitions of any
terms referred to in the definition, any results from class
or the tutorials/assignments that look related, and maybe
some fundamental facts you know entering this class about
numbers.

• Combine those things by using logic or algebra to create
more things you know are true.

• Keep doing this until you get to the claim!

10



Both of the two “fixed” proofs above were direct proofs in this
sense: in both cases,

• we started with definitions and known facts (that any odd
number can be written in the form 2k+ 1 and that any real
number when squared is nonnegative),

• combined these observations by using algebra, and then

• used more definitions and known facts to conclude the de-
sired results!

A particularly common form of direct proof comes up when people
want to prove a statement of the form “if A holds, then B must
follow” for two propositions A and B (or equivalently, “A implies
B,” which we write in symbols as A⇒ B.)

To write a direct proof of such a statement, we proceed as before,
but also throw in the assumption that A holds! That is, to prove
“A implies B,” we assume that A is true, and try to combine this
assumption with other known true things to deduce that B is true.
(Logically speaking, this is because A⇒ B holds as long as we’re
never in the situation where A is true and B is false. Therefore,
if we can show that A being true forces B to also be true, then
we know that our claim must hold!)

We illustrate this with an example here:

Claim. If n is an odd integer, then n2 can be written as a multiple
of 4 plus one.

Proof. We start by “assuming” the part by the “if:” that is, we
assume that n is an odd integer. By definition, this means that
we can write n = 2k + 1 for some other integer k.

We seek to study n2. By our observation above, this is just (2k+
1)2 = 4k2 + 4k+ 1 = 4(k2 + k) + 1. This is a multiple of 4 plus 1,
as claimed! Therefore we have completed our proof.

1.4.2 Proofs by Contrapositive

Not all proofs are this straightforward, however! Sometimes we
will need to be a bit more clever. Even statements of the form
P ⇒ Q can be rather tricky to prove: sometimes P is a really
tricky condition to start from, and we’ll have no idea how to use
our “assumption” that P is true to deduce Q.

One way to get around this sort of issue is via something called
the contrapositive! Specifically, if we have a statement of the
form P =⇒ Q, the contrapositive of this statement is simply the
statement

¬Q⇒ ¬P .

The nice thing about the contrapositive of any statement is that
it’s exactly the same as the original statement! For example, if
our statement was “all UoA students are not soluble in water,” the
contrapositive of our claim would be the statement “anything that
is soluble in water is not a UoA student.” These two statements
clearly express the same meaning – one just starts out by talking
about UoA students, while the other starts out by talking about
things that you can dissolve in water. So, if we want to prove a
statement P =⇒ Q, we can always just prove the contrapositive
¬Q⇒ ¬P instead, because they’re the same thing! This can allow
us to switch from relatively difficult starting points (situations
where P is hard to work with) to easier ones (situations where
¬Q is easy to work with.) In particular, in the example above,
working with the statement “all UoA students are not soluble in
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water” will make a brute-force proof much easier: it is far easier
to drop every UoA student in a lake than to check every soluble
object to see if it’s been to UoA recently.

To illustrate this, consider the following example:
Theorem. Let n be a natural number. Then, if n ≡ 2 mod 3, n
is not a square: in other words, we cannot find any integer k such
that k2 = n. ( We write that a ≡ b mod c iff a− b is a multiple of
c: in other words, that a and b are the “same” up to some number
of copies of c.)

Proof. A direct approach to this problem looks . . . hard. Basically,
if we were to prove this problem directly, we would take any n ≡
2 mod 3 – i.e. any n of the form 3m+2, for some integer m – and
try to show that this can never be a square. Basically, we’d be
looking at the equation k2 = 3m+2 and trying to show that there
are no solutions to this equation, which just looks kind of. . . ugly,
right?

So: because we are mathematicians, we are lazy. In particu-
lar, when presented with a tricky-looking problem, our instincts
should be to try to make it trivial: in other words, to attempt
different proof methods and ideas until one seems to “fit” our
question. In this case, as suggested by our section title, let’s at-
tempt to prove our theorem by studying its contrapositive:

If n is a square, then n 6≡ 2 mod 3.

Equivalently, because every number is equivalent to either 0, 1, or
2 mod 3, we’re trying to prove the following:

If n is a square, then n ≡ 0 or 1 mod 3.

This is now a much easier claim! – the initial condition is really
easy to work with, and the later condition is rather easy to check.

Now that we have some confidence in our ability to prove our
theorem, we proceed with the actual work: take any square n,
and express it as k2, for some natural number k. We can break k
into three cases:

1. k ≡ 0 mod 3. In this case, we have that k ≡ 3m for some
m, which means that k2 = 9m2 = 3(3m2) is also a multiple
of 3. Thus, k2 ≡ 0 mod 3.

2. k ≡ 1 mod 3. In this case, we have that k ≡ 3m+1 for some
m, which means that k2 = 9m2 +6m+1 = 3(3m2 +2m)+1.
Thus, k2 ≡ 1 mod 3.

3. k ≡ 2 mod 3. In this case, we have that k ≡ 3m + 2 for
some m, which means that k2 = 9m2 + 12m+ 4 = 3(3m2 +
4m+ 1) + 1. Thus, k2 ≡ 1 mod 3.

Therefore, we’ve shown that k2 isn’t congruent to 2 mod 3, for
any k. So we’ve proven our claim!

We give a second example here:
Theorem. For an integer x, if x2 + 6x+ 91 is odd then x is even.

Proof. This is another problem where direct proof seems hard. If
we’re starting from the assumption that x2 + 6x + 91 is odd, we
could apply the definition of “odd” to write

x2 + 6x+ 91 = 2k + 1

for some integer k; but what would we do from here to get infor-
mation about x? Absent any particularly clever ideas we’d have
to just start solving for x, which will involve square roots and
some pretty ugly calculations; not likely a great idea.

Instead, let’s try the contrapositive again! If we take our state-
ment above and form the contrapositive, we get the following eas-
ier version of our claim: 12



Theorem. For an integer x, if x is odd then x2 + 6x+ 91 is even.
This seems much easier! In particular, we have a much nicer
starting place: we start with an odd integer x, which means we
can write x = 2k + 1 for some other integer k.

From here, it’s also relatively clear what we should do: let’s plug
this identity into the right-hand part! In particular, if x = 2k+ 1,
then x2 + 6x + 91 = (2k + 1)2 + 6(2k + 1) + 91 = 4k2 + 4k +
1 + 12k + 6 + 91 = 4k2 + 16k + 98 = 2(2k2 + 8k + 49). So this
is even, as claimed! Therefore we’ve proven the contrapositive to
our original claim, and with it proven our original claim itself.

1.4.3 Proofs by Contradiction

Contradiction is another proof method that can be remarkably
useful when we’re stuck on something difficult. The best way to
understand how a proof by contradiction works is to start with an
example:

Theorem. The number
√

2 is not rational.

Proof. As always, let’s start by unpacking our definitions:

•
√

2 is the unique positive real number such that when we
square it, we get 2.

• A number x is rational if we can write x = m
n , where m

and n are integers and n is nonzero.

With this done, our claim can be unpacked to the following:

“For a real number x, if x =
√

2, then there are no values of
m,n ∈ Z with n 6= 0 such that x = m

n .”

So: how do we do this? Because the problem wants us to show
that we cannot wrote

√
2 = m

n for any integers m,n with n 6= 0,
we can’t just check a few examples: we’d have to look at all of
them, and this could be quite difficult! We’d have to find some
useful property that makes all examples of this form fail, and this
could be quite hard to find.

Instead, consider the following way to “side-step” these difficulties.
Instead of looking at all pairs m,n and trying to show that each
one fails, let’s assume that we have one such pair m,n such that√

2 = m
n !

With this assumption in hand, let’s now show that this assump-
tion “breaks mathematics” in some way: that starting from this
assumption, we can get to something we know is impossible, like
1 + 1 = 0.

If we can do this, then we know that our original assumption that
there was such a fraction m

n must have been nonsense (i.e. false),
and therefore that our claim that no such fraction exists is true!

More generally, this is how proof by contradictions go:

• We have a claim we’re trying to prove; let’s denote it P , for
shorthand.

• Instead of proving P is true directly, we want to prove that
¬P is impossible.

• To do this, we can simply do the following:

1. Assume, for the moment, that ¬P is actually true!

2. Working from this assumption, find a pair of contra-
dictory statements that are implied by ¬P ; i.e. a pair
of statements Q,¬Q such that (¬P )⇒ Q and (¬P )⇒
¬Q. Common examples are Q = “1 = 0”, or Q(n) =
“n is even” or other such things.
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3. This proof demonstrates that ¬P must be impossi-
ble, because it implies two contradictory things (like
the two simultaneous claims Q(n) = “n is even” and
¬Q(n) = “n is odd.”) Mathematics is free from contra-
dictions by design15; therefore, we know that this must
be impossible, i.e. that ¬P must be false, i.e. that P
must be true!

In general, this is how a proof by contradiction works;16 take
your claim P , assume it’s false, and use ¬P to deduce contradic-
tory statements, which you know mathematics cannot contain.

We do this here! Suppose that we can find two integers m,n with
n 6= 0 such that

√
2 = m

n . If m and n have common factors, divide
through by those factors to write m

n in its simplest possible form:
that is, don’t write something like 3

6 or 12
24 , write 1

2

Then if we square both sides, we get 2 = m2

n2 . Multiplying both
sides by n2 gives us 2n2 = m2, which means that m2 is even
(because it is a multiple of 2)!

This means that m is even (see problem 5 on week 2’s tutorial!),
and therefore that we can write m = 2k for some integer k. If we
plug this into our equation 2n2 = m2, we get 2n2 = (2k)2 = 4k2,
and by dividing by 2 we have n2 = 2k2.

This means that n2 is even, and therefore that n is even as well
(same logic as before!)

But this means that both n and m are multiples of 2; that is, that
they have a common factor! We said earlier that we’d divided
through by any common factors to get rid of them, so this is a
contradiction: from our initial assumption we got to something
that is both true and false. As a result, our original assumption
(that we could write

√
2 = m

n ) must be false; that is, we have

shown that
√

2 6= m
n for any integers m,n with n 6= 0, as desired.

Yay!

We consider another example here:
Theorem. There are two irrational numbers a and b such that
ab is rational.

Proof. In the example we’re studying here, we want to show that
it’s impossible for ab to be irrational for every pair of irrational
numbers a, b. To do this via a proof by contradiction, we do
the following: first, assume that ab is irrational for every pair of
irrational numbers a, b! If we apply this knowledge to one of the
few numbers (

√
2) we know is irrational, our assumption tells us

that in specific

√
2
√

2
is irrational.

What do we do from here? Well: pretty much the only thing
we have is our assumption, our knowledge that

√
2 is irrational,

and our new belief that
√

2
√

2
is also irrational. The only thing

really left to do, then, is to let a =
√

2
√

2
, b =

√
2, and apply

our hypothesis again. But this is excellent! On one hand, our we
have that ab is irrational by our hypothesis. On the other hand,
we have that ab is equal to(√

2

√
2
)√2

=
√

2

√
2·
√

2
=
√

2
2

= 2,

15This is why we tried to insure that we only start with true statements in
our proofs.

16A beautiful quote about proofs by contradiction, by the mathematician
G. H. Hardy: “[Proof by contradiction], which Euclid loved so much, is one
of a mathematician’s finest weapons. It is a far finer gambit than any chess
gambit: a chess player may offer the sacrifice of a pawn or even a piece, but
a mathematician offers the game.”
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which is clearly rational. This is a contradiction! Therefore, we
know that our hypothesis must be false: there must be a pair of
irrational numbers a, b such that ab is rational.

An interesting quirk of the above proof is that it didn’t actually
give us a pair of irrational numbers a, b such that ab is rational!
It simply told us that either

•
√

2
√

2
is rational, in which case a = b =

√
2 is an example,

or

•
√

2
√

2
irrational, in which case a =

√
2
√

2
, b =

√
2 is an

example,

but it never actually tells us which pair satisfies our claim! This is
a weird property of proofs by contradiction: they are often non-
constructive proofs, in that they will tell you that a statement
is true or false without necessarily giving you an example that
demonstrates the truth of that statement.

1.4.4 Proofs of Equivalence

Another common proof technique comes up when we’re trying to
prove two statements are equivalent. For example, suppose that
we have the following two statements:

• P (x, y) = “(x+ 1)2 = (y + 1)2.”

• Q(x, y) = “x+ y = −2,’ or x = y.’

As it turns out, these two statements are equivalent: i.e. P (x, y)⇔
Q(x, y). How can we prove this? Well, one useful blueprint for
such a proof is the following:

• First, show that P (x, y) ⇒ Q(x, y): i.e. that if we assume
P (x, y) is true, then we can conclude that Q(x, y) is also
true.

• Then, show the opposite direction: that Q(x, y)⇒ P (x, y)!
I.e. we will assume that P (x, y) is true, and attempt to
prove that Q(x, y) is also true.

If we have done this, we will have proven that P (x, y) is true if and
only if Q(x, y) is also true: i.e. that P (x, y)⇔ Q(x, y)! Excellent.
Now, let’s actually do this for these two statements, to illustrate
how such a proof works:

P (x, y)⇒ Q(x, y): Assume that P (x, y) holds: i.e. that (x+1)2 =
(y+ 1)2. Then, by taking square roots of both sides, we have that

(x+ 1) = ±(y + 1),

where the ± is because there are two possible square roots for
any positive number, either its positive square root or that same
positive square root times (−1). So: if

(x+ 1) = +(y + 1),

then subtracting 1 from both sides gives us x = y, which is one
possible way to make Q(x, y) true. Otherwise, if

(x+ 1) = −(y + 1),

we can add y to both sides and subtract 1 from both sides to get
x+y = −2, which is another way to make Q(x, y) true. Therefore,
in either case, if P (x, y) is true, so is Q(x, y)!

Q(x, y) ⇒ P (x, y): There are two different ways to make Q(x, y)
true: either set x = y or set x + y = −2, i.e. x + 1 = −(y + 1).
In either case, we have that (x+ 1)2 = (y + 1)2, so we know that
P (x, y) is true.

Therefore, we’ve shown that P (x, y)⇔ Q(x, y).
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1.4.5 Proof by Construction

In all of the proofs above, we’ve been focused on proving claims
about “all” numbers x, y, or “all” odd integers n, or other sorts
of “universal” claims about things. When we’re proving claims
of these forms, then we need to use techniques and arguments
like the ones above where we work in general / don’t get to use
examples to prove our claim!

Sometimes, however, we’ll find ourselves with claims of the form
“There exists a number n such that...” or “There is a value x
with the property...” In this sort of situation, we’re not being
asked to show that something is true for all values: instead, we’re
just asked to find a single example!

In situations like this, a common technique is proof by con-
struction, where we simply create an object with the desired
properties. We illustrate this with an example:

Claim. There is an odd integer that is a power of two.

Proof. Notice that 20 = 1. Therefore, 1 is a power of 2. 1 is
also odd, as we can write it in the form 1 + 2k for some integer
k (specifically, k = 0.) Therefore we’ve constructed the claimed
integer, as desired.

Notice the following two aspects of this proof:

• We didn’t have to work with a general integer n; instead, we
got to give a specific example! This is because our claim was
of the form “There is. . . ”, which means that we’re just asked
for a single example. If our proof had started “For all. . . ”,
this would be different, and this proof would be invalid (just
like how examples weren’t enough for a proof in our earlier
“the sum of any two odd numbers is even” claim.)

• Also notice that we didn’t just say “1 is the answer” and
ended our proof; we actually took the time to explain why
1 has the desired properties. You should expect to always
do this!

We give a second example, to illustrate how these sorts of things
come up in combinatorics and/or “puzzle” mathematics:

Claim. Take the aces and face cards from a standard 52-card
deck. Can you arrange them in a 4 × 4 grid so that no suits or
symbols are repeated in any row or column?

Proof. Behold!
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In this proof, we don’t have much to really explain: the solution
presented self-evidently has the desired property (just check every
row and column.) If it was unclear, though, we’d have to have
some explanation along with our answer!

1.4.6 Disproofs

We’ve talked a lot about how to prove claims in the above subsec-
tions. It’s also worth talking here about how to disprove claims:
that is, how to show that something is false!

There are, broadly speaking, two sorts of claims we’ll run into in
mathematics:

• Claims of the form “There is some x such that . . . ”, or
more generally claims of existence. To prove a claim about
existence, as noted above in the constructive proof section,
we just need to construct an example that shows that such
a thing exists!

To disprove such a claim, however, we’d need to show that
such an example cannot exist. That is, we’re making a
claim about all things, and saying that none of them are
examples for our claim! In other words, the opposite of
“There is an x such that . . . ” is “For every x, it is false that
. . . ”

To give a natural language example, suppose that someone
made the claim that “There is a University of Auckland
student that is 3 meters tall.” To disprove this, we would
need to look at all UoA students, and show that each one
of them is not three meters tall! In other words, our claim
about existence (there is a UoA student) became a claim
about all students (every UoA student), and the property
we wanted (is three metres tall) was made false.

• Conversely, we might want to study claims of the form “For
all x, we have that . . . ”, which we can think of as “universal”
claims. These usually have words like “every,” “any” or “all”
in them. To prove a claim about all things, as noted before,
we need to work in general and construct arguments by using
definitions/etc to cover all possible cases.

To disprove such a claim, however, we can get away with
a lot less work! To “break” a claim about all values of x, it
suffices to find just one value of x such that our claim fails.
In other words, the opposite of “For all x, we have that . . . ”
is “There is an x such that . . . fails.” We call such a value x
a counterexample, and often prove that such things exist
via construction (as discussed earlier.)

To give a second natural language example, consider the
claim “Every University of Auckland student does not have
red hair.” To prove this claim false, we just need to find one
UoA student who has red hair! In other words, our universal
claim (every UoA student) became an existence claim (there
is a UoA student), and the condition we wanted (does not
have red hair) was made false.

We give an example of each sort of disproof here:

Claim. For any integer n, at least one of the two numbers n2 +
1, n2 + 2 must be prime.

Disproof. We start by writing out what the opposite of this claim
is, so that we know what a disproof would be. As noted above, we
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disprove claims about all things by finding a single counterex-
ample: so the negation of our claim should start with the phrase
“There is an integer n such that . . . ”

We follow this with the negation of our desired property. If our
original claim was that at least one of n2 + 1, n2 + 2 is prime,
then the negation of this claim is that neither of them are prime.
That is, the negation of our original claim, in its entirety, is the
following:

“There is an integer n such that both n2 + 1 and n2 + 2 are
nonprime.”

If we’re disproving our original claim, then we’re just trying to
prove this new, negated claim!

This is a “there is” proof, and so we can prove it by construction:
that is, we just need to find a value of n that makes both n2 + 1
and n2 + 2 nonprime. To find such a value, we just try numbers
until we find one that has the desired properties:

• If n = 1, then n2 + 1 = 2 and n2 + 2 = 3. At least one of
these is a prime, so this isn’t a counterexample.

• If n = 2, then n2 + 1 = 5 and n2 + 2 = 6. At least one of
these is a prime, so this isn’t a counterexample.

• If n = 3, then n2 + 1 = 10 and n2 + 2 = 11. At least one of
these is a prime, so this isn’t a counterexample.

• If n = 4, then n2 + 1 = 17 and n2 + 2 = 18. At least one of
these is a prime, so this isn’t a counterexample.

• If n = 5, then n2 + 1 = 26 and n2 + 2 = 27. Both of these
are nonprimes (as 26 = 2 · 13 and 27 = 3 · 3 · 3), so this is
a counterexample!

Claim. There is an integer n such that n(n+ 1) + 3 = 0.

Disproof. As before, we start by writing out what the opposite of
this claim is. This is a claim about existence, so we can disprove
it by showing that no examples exist: that is, we’ll write a “uni-
versal” proof that looks at all things, and shows that they are all
not examples! In other words, the opposite of our claim is the
following:

“For every integer n, we have that n(n+ 1) + 3 6= 0.”

To prove this new, negated version of our original claim, we pro-
ceed with a direct proof. Take any integer n (and notice that we
have to consider any possible integer n, i.e. we can’t just find a
single example, as we need to work in general.) Now, notice the
following:

• For any integer n, n is either even or odd; that is, we can
either write n = 2k or n = 2k + 1 for some integer k.

• Therefore, we either have that n(n+ 1) + 3 = (2k)(2k+ 1) +
3 = 2(k(k+1)+1)+1, or n(n+1)+3 = (2k+1)(2k+2)+3 =
2((2k + 1)(k + 1) + 1) + 1. In both cases, we have that this
number is odd, as we’ve written it as a multiple of 2 plus 1.

• 0 is even (as we can write 0 = 2 · 0,) and thus is not odd.

• Therefore n(n + 1) + 3 6= 0 for any integer n, as an odd
number can never be equal to an even number!

18



1.5 Quantifiers

We close our first chapter of Compsci 225 by introducing the defi-
nition for a concept we used quite heavily in our previous sections:
the idea of quantifiers.

Definition. In mathematics, we define the universal quanti-
fier, ∀, as shorthand for the phrase “For every” (or equivalently
“for all,” “for every.”)

Similarly, we define the existential quantifier ∃ as shorthand
for the phrase “There exists” (or equivalently “there is,” “you can
find a. . . ”)

As practice, we can rewrite the claims we studied in the previous
section with this quantifier notation as follows:

• The claim “For any integer n, at least one of the two num-
bers n2 + 1, n2 + 2 must be prime” can be written with
quantifiers as follows:

∀n ∈ Z, either n2 + 1 or n2 + 2 must be prime.

• The claim “There is an integer n such that n(n+1)+3 = 0”
can be written with quantifiers as follows:

∃n ∈ Z such that n(n+ 1) + 3 = 0.

We can often have mathematical statements that have “nested”
quantifiers in them, i.e. multiple quantifiers in a row. For exam-
ple, the statement “For every real number x, if x ≥ 0, then there
is some real number y such that x = y2” can be written with
quantifiers as follows:

∀x ∈ R, (x ≥ 0)⇒ (∃y ∈ R such that x = y2).

One thing to notice with quantifiers is that we always specify
what set we’re choosing our variables from: that is, we always
write things like ∀x ∈ R or ∃y ∈ Z. We call the set that we’re
choosing these variables from the universe for that quantifier:
i.e. the universe in the expression “∀x ∈ N” is just N.

On their own, quantifiers are pretty unassuming; they’re just
shorthand for mathematical phrases that we know and use on
a daily basis! The reason that I’ve put them into a separate sec-
tion here is because they have a few surprising properties that can
catch students by surprise:

1.5.1 Order and Quantifiers

The first thing to stress is that with quantifiers, the order in
which you write them is usually very important! To illustrate this
with an example, consider the following two claims:

A: “There is a song that everyone in Auckland can sing.”

B: “Everyone in Auckland has some song that they can sing.”

If we were to write this with quantifiers and let A be the set of all
people in Auckland and S be the set of all songs, these sentences
would become

A: ∃s ∈ S such that ∀a ∈ A, a can sing s.

B: ∀s ∈ S, ∃a ∈ A such that a can sing s.

On one hand, A and B are the “same” sentence, just with the
order of the quantifiers swapped. They’re both claims about some
song existing and about everyone in Auckland’s ability to sing!
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However, the meaning of these two sentences is very different!
In A, we’re saying that there is some song such that everyone
knows how to sing that specific song. If this were true, then this
would be something like saying “everyone in Auckland knows how
to sing Bohemian Rhapsody,” or something else like that.

In B, we’re making a much weaker claim: we’re just saying that
each person in Auckland has a song that they personally know
how to sing. In particular, because the “for all ” quantifier comes
first, each person gets to have their own song that they know
how to sing: so some people might know the NZ national anthem,
others might know Bohemian Rhapsody, others might know the
Pokémon theme song, and so on/so forth.

As a result, we can see that switching the order of quantifiers
can dramatically change the meaning of a claim! There are cer-
tainly instances where you can change the order and you’ll still
get something that’s logically equivalent, but this is not common.

In general, when you’re reading a sentence with quantifiers in it,
try to read left-to-right and imagine each part of the quantifier
becoming fixed after you’ve parsed it. So, in A, once we’ve read
the “∃s ∈ S” part, we’ve forced ourself to pick out some song s,
and now need the rest of the sentence to make sense given that
chosen s. In B, however, we first read “∀a ∈ A,” and so the first
thing we fix is the person a: from here we just need to find a song
s for that specific person, which is much easier than finding one
song that works for everyone!

Here’s a second, more mathematical example. Consider the fol-
lowing two statements, that both depend on a set S of real num-
bers:

A: For every x ∈ S, there is a y ∈ S such that xy = 1.

B: There is a y ∈ S such that for every x ∈ S, xy = 1.

In quantifiers, we can write these sentences as follows:

A: ∀x ∈ S, ∃y ∈ S such that xy = 1.

B: ∃y ∈ S such that ∀x ∈ S, xy = 1.

Again, these sentences are the “same” except the order of the
quantifiers has been reversed. Just like before, though, this dra-
matically changes the meaning of each sentence!

A, for instance, is the claim that for any x ∈ S, we can find some
value to multiply x by to get back to 1. In other words, A is the
claim that every number in S has a multiplicative inverse also in
S.

So, for example, a set like S = {3, 2, 1
2 ,

1
3} would satisfy17 A,

because for every element in S we can find another element in S
such that their product is 1: if x = 2 we pick y = 1

2 , if x = 3 we
pick y = 1

3 , if x = 1
2 we pick y = 2, and if x = 1

3 we pick y = 3.

B, however, is the claim that there is one element in S that when
multiplied by anything else will always yield 1! In other words, a
set like {3, 2, 1

2 ,
1
3} would not satisfy B, because no matter what

element you pick for y from {3, 2, 1
2 ,

1
3}, it will not be true that y

times every other element in B will always yield 1.

In particular, if we choose x = y y · x 6= 1 for any y in the set
{3, 2, 1

2 ,
1
3}, which is enough to show that this claim does not hold

for all values of x.

Therefore these two statements are inequivalent: that is, their
truth values can disagree with each other!

17We say that an object A satisfies a proposition that depends on some
variable A if plugging in that specific object into the proposition makes it
true. For instance, x = 1 satisfies the proposition “x2 = 1”, while x = 2 does
not satisfy the proposition “For all y ∈ R, xy = y.”
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1.5.2 Unexpected Quantifiers

A second note to be aware of is that some mathematical phrases
have quantifiers “implicitly” baked into them, or might not have
the quantifiers you expect:

• If someone says something like “If n is an integer, then n(n+
1) is always even,” then they’re making a claim about all
integers. That is: you wouldn’t prove this claim by just
looking at n = 3 and saying that it works, just like you
wouldn’t prove a claim of the form “if you always guess (d)
you’ll ace the mid-sem test” by saying “Hey, it worked in
2012 therefore it’ll always be true.”

Therefore, if you wanted to translate this sentence into quan-
tifiers, you’d say “∀n ∈ Z, n(n+ 1) is always even.”

• Similarly, in many theorem / claim / exercise statements in
mathematics, you’ll see phrases like

– “Let x be a real number. Prove that . . . ”

– “Assume that A is a set of integers. Show that . . . ”

– “Suppose that n is a natural number. Prove that . . . ”

In all of these cases, there is an implicit ∀ quantifier on the
front of these statements. That is, if we were to translate
these statements into quantifiers, we would do so as follows:

– ∀x ∈ R . . . – ∀A ⊆ Z . . . – ∀n ∈ N . . .

This is because phrases like “let”, “suppose” and “assume”
are telling you to consider an arbitrary object, and to then
show that it has the desired property. That is: imagine if
someone started a conversation with you by saying “Suppose
you got to have a dog. What kind of breed would you pick?”
The first part of this sentence invites you to imagine every
kind of dog; as a result, a universal quantifier is the right
choice for describing this sort of claim.

• Finally, claims of the form “There is no x such that . . . ”
sometimes trip people up because of the way in which the
English translates to quantifiers and negation.

That is: suppose you had the claim “There is no x such that
x2 < 0.” In quantifiers, I claim you would translate this as
¬(∃x such that x2 < 0), i.e. “It is not true that there exists
a value of x such that x2 < 0.

This makes sense if you parse it through: saying that “no
thing exists” is equivalent to saying that “it is false that the
thing exists,” which is how we translated the statement. As
we discussed before, we can simplify this to the statement
“∀x, x2 ≥ 0;” this is because saying that “no thing exists
with property blah” is saying “for all things, they do not
have property blah.”

When you’re first starting out with proofs, however, it is
tempting to translate “There is no x such that x2 < 0” as
“∃¬x such that x2 < 0.” This, however, doesn’t make any
sense! That is: what should ¬x mean? If x is a real number
like π, what would ¬π even be?

In an attempt to fix this, sometimes people just decide “eh,
the negation should have probably been to the right of x”
and write “∃x such that ¬(x2 < 0).” This at least makes
sense, but on the other hand is not at all what you want to
say!
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In this case, this mistaken translation is the claim that
“there is a value of x such that x2 ≥ 0.” In the original, we
were making a very strong statement about all real numbers
and that their squares can never be negative; in the mistake,
however, we have the much weaker claim that there is just
some real number with nonnegative square (which is much
less useful!)

1.5.3 Negation and Quantifiers

One last thing to specifically notice about quantifiers is how their
negations work. In particular, notice that in our earlier chapter
we saw that the negation of

“There is an integer n such that n(n+ 1) + 3 = 0”
was

“For every integer n, we have that n(n+ 1) + 3 6= 0,”

and similarly that the negation of

“For any integer n, at least one of the two numbers
n2 + 1, n2 + 2 must be prime”

was

“There is an integer n such that both n2 + 1 and n2 + 2 are
nonprime.”

In each of these cases, negating our claims did two things:

• We “flipped” our quantifiers: that is, we switched the ∀ and
∃ quantifiers. This is because we disprove a “for all” claim
by showing that a counterexample exists, and we disprove
a “there exists” claim by showing that all things are not
examples for that claim.

• We then negated the property that comes afterwards, which
is how we get the “counterexample” / “not example” part.

In general, the rule for negating quantifiers is as follows:

• ¬(∃x ∈ A such that . . . ) is equivalent to ∀x ∈ A,¬(. . .)

• ¬(∀x ∈ A such that . . . ) is equivalent to ∃x ∈ A,¬(. . .)

In particular, notice that when we negate a quantifier, the “uni-
verse” of the quantifier (i.e. the set that the variable that we’re
quantifying comes from) remains the same: i.e. we don’t flip from
“∀x ∈ R” to “∃x /∈ R”, we flip to “∃x ∈ R.” This is because we’d
disprove a claim about all real numbers by looking at other real
numbers; in general, this is why we do not change the universe
that we’re quantifying over.

Here’s an example, to illustrate how this works:
Problem. Without using any words of negation (i.e. without
using the words not, no, nor, neither,. . . ), write down a sentence
that describes the negation of the following:

“If a book on my bookshelf has a page with more than fifty
words on it, then the first letter of every word on that page

is a vowel.”

Solution: First off, we try to translate our claim into quantifiers.
As noted before, this sort of “if” statement has a quantifier built
into it: we’re implicitly talking about all of the books on my
bookshelf. Therefore, this sentence could be roughly translated
into quantifiers as follows:
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∀b on my shelf,

(
(∃ a page p in b with 50+ words) ⇒ (∀ word w

on p, w starts with a vowel.)

)
By using our rules from earlier, this sentence has the negation

∃b on my shelf such that ¬
(

(∃ a page p in b with 50+ words) ⇒

(∀ word w on p, w starts with a vowel.)

)
Recall that A ⇒ B fails if and only if A is true and B is false.
Therefore, if we’re negating a claim of the form A → B, we’re
saying that the A part must be true and the B part must false!
In our claim, then, the negation of the section in parentheses is
just saying that (∃ a page p in b with 50+ words) should be true
and (∀ word w on p, w starts with a vowel) should be false: i.e.

∃b on my shelf such that (∃ a page p in b with 50+ words) ∧ ¬(∀

word w on p, w starts with a vowel.)

)
We again apply our negation-of-quantifiers rule to simplify this
last bit, to get

∃b on my shelf such that (∃ a page p in b with 50+ words) ∧ (∃

word w on p, w starts with a consonant.)

)
We can translate this back into plain English as follows:

“There is a book on my bookshelf with a page with more than
fifty words on it, such that there is some word on that page that

starts with a consonant.”

Here’s a more math-y example to consider:
Problem. Fermat’s Last Theorem is the following claim:

If n is an integer that is greater than or equal to 3, then there
are no positive integers x, y, z such that the equation

xn + yn = zn has a solution.

Write the negation of this sentence, and then simplify it.
Solution: Written with quantifiers, and recalling that these sorts
of “if” statements have an implicit “for all” hanging around the
front, our statement is just

∀n ≥ 3 ∈ Z,¬ (∃x, y, z > 0 ∈ Z such that xn + yn = zn)

We can simplify this using our negation rules to

∀n ≥ 3 ∈ Z,∀x, y, z > 0 ∈ Z, xn + yn 6= zn.

The negation of this is also straightforward to write with our nega-
tion rules:

¬ (∀n ≥ 3 ∈ Z,¬ (∃x, y, z > 0 ∈ Z such that xn + yn = zn))

⇒∃n ≥ 3,∃x, y, z > 0 ∈ Z such that xn + yn = zn.

Notice how throughout this process we kept the “universe” parts
of these claims the same: that is, when we negated ∀n ≥ 3 ∈ Z,
we switched this to ∃n ≥ 3 ∈ Z, not to ∃n < 3 ∈ Z. This, again, is
because our original claim was about all integers that are at least
3! Therefore, if we want to disprove such a claim, we should be
arguing that we can find a counterexample amongst the integers
that are at least 3; that is, we preserve the universe, and just
negate the property.
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Compsci 225 Lecturer: Padraic Bartlett

Chapter 2: Integers, Algorithms, and Mods
Weeks 3-4 UoA 2018

In the past section, we spent a lot of time talking about the tech-
nique and language of mathematical proof. Here, we put these
skills to the test by studying a single subject in depth: the in-
tegers! In this section, we will study many different concepts
involving whole numbers, ranging from primes to greatest com-
mon divisors to modular arithmetic.

Alongside these concepts, we will study a new proof technique
that we didn’t examine in the past section: the idea of “proof by
algorithm!” In this section, we will use algorithms to prove that
certain mathematical theorems hold; as well, we will “reverse”
this process and sometimes write mathematical proofs to show
that certain algorithms are guaranteed to work.

We start with some fundamental definitions:

2.1 Factors, Primes, and Algorithmic Proofs

Definition. The set of integers, Z, is the set18 of all whole num-
bers (where we consider negative numbers and 0 to be whole num-
bers.) In other words,

Z = {. . .− 4,−3,−2,−1, 0, 1, 2, 3, 4 . . .}

Similarly, the set of natural numbers, N, is the set of all non-
negative19 integers. In other words,

N = {0, 1, 2, 3, 4, . . .}

Definition. Given two integers a, b, we say that a is a factor of
b if there is some other integer k such that ak = b. We write a | b
as shorthand for “a is a factor of b.” Another synonym for factor
is “divisor;” that is, someone could write “a is a divisor of b” or
“a divides b”, and these would both mean the same thing as a | b.

Here’s a string of examples, to make this clear:

• 4 | 12; this is because we can multiply 4 by 3 to get 12.

• −6 | 72; this is because we can multiply 6 by −12 to get 72.

• 2 - 15; this is because for any integer k, 2k is an even number,
and so is in particular never equal to 15.

• 1 | n for any integer n; this is because we can always multiply
1 by n to get n. Similarly, n | 1.

• n | 0 for any integer n; this is because we can always multiply
n by 0 to get 0.

Definition. A prime number is any positive integer with pre-
cisely two distinct positive factors; namely, 1 and itself. The first
few prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, . . .

18If you’re wondering why we use the letter “Z” here: it’s because the
German word for number is “zahlen,” and many German mathematicians
(e.g. Gauss) contributed to the foundations of modern number theory.

19Note: mathematicians often disagree about whether 0 is a natural num-
ber. Some mathematicians, notably number theorists, want N to consist of
only the positive integers, and so do not consider 0 to be a natural number.
In theoretical computer science, though, we usually consider 0 to be a nat-
ural number; this is because we want our arrays in coding to start at 0, not
1! (Relatedly, if you’re wondering about why MATLAB starts its arrays at 1
unlike all other languages, this is why.)
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Note that 1 is not a prime number! This is because 1’s only factor
is 1, and so 1 does not have two distinct prime factors. As well,
notice that 2 is the only even prime number; this is because every
other positive even number by definition has the form 2k, and so
has at least 1, 2, k, 2k as its set of factors (and thereby has at least
three distinct factors, namely 1, 2 and 2k.)

Definition. A composite number is any positive integer n that
can be written as the product of two integers a, b, both of which
are at least 2 (and thus both of which are strictly smaller than n.)
For example, 6 = 2 · 3, 9 = 3 · 3, and 24 = 2 · 12 are all composite.

Notice that any positive number is either a prime, composite, or
1.

Definition. Given a positive integer n, a prime factorization
of n is any way to write n as a product of prime numbers.

Here are a few example prime factorizations:

• 120 = 23 · 3 · 5,

• 243 = 35,

• 30031 = 59 · 509

1. Acquire and measure out the following
ingredients:

• 2 cups of buttermilk, or 1 cup
milk + 1 cup yoghurt whisked
together.

• 2 cups of flour.
• 2 tablespoons of sugar.
• 2 teaspoons of baking powder.
• 1/2 teaspoon of baking soda.
• 1/2 teaspoon of salt.
• 1 large egg.
• 3 tablespoons unsalted butter.
• 1-2 teaspoons more butter

2. Whisk the flour, sugar, baking powder,
baking soda, and salt in a medium
bowl.

3. Melt the 3 tablespoons of butter.

4. Whisk the egg and melted butter into
the milk until combined.

5. Pour the milk mixture into the dry
ingredients, and whisk until just
combined (a few lumps should remain.)

6. Heat a nonstick griddle/frypan on
medium heat until hot; grease with a
teaspoon or two of butter.

7. Pour 1/4 cup of batter onto the skillet.
Repeat in various disjoint places until
there is no spare room on the skillet.
Leave gaps of 1cm between pancakes.

8. Cook until large bubbles form and the
edges set (i.e. turn a slightly darker
color and are no longer liquid,) about
2 minutes.

9. Using a spatula, flip pancakes, and
cook a little less than 2 minutes longer,
until golden brown.

10. If there is still unused batter, go to 5;
else, top pancakes with maple syrup
and butter, and eat.

A remarkably useful fact about prime numbers is that every pos-
itive integer has a prime factorization: in this sense, we can think
of prime numbers as the “building blocks” of the integers. Finding
such factorizations is both incredibly useful (see: RSA cryptogra-
phy, many other forms of encryption) and incredibly hard to do
efficiently (see here for more details!)

For our first proof in this section, let’s show that this fact is true!
That is, let’s prove the following theorem:

Theorem. If n is a positive integer, then we can find a list of
prime numbers p1, p2, . . . pk such that n = p1 · p2 · . . . · pk.

To prove this result, we use an algorithm. In case you haven’t
seen what an algorithm is here, we define this term here:

Definition. An algorithm is a precise and unambiguous set of
instructions.

Typically, people think of algorithms as a set of instructions for
solving some problem; when they do so, they typically have some
restrictions in mind for the kinds of instructions they consider
to be valid. For example, consider the following algorithm for
proving the Riemann hypothesis:

1. Prove the Riemann hypothesis.

2. Rejoice!

On one hand, this is a fairly precise and unambiguous set of in-
structions: step 1 has us come up with a proof of the Riemann
hypothesis, and step 2 tells us to rejoice. (I guess if you wanted
to nitpick, “rejoice” isn’t very carefully defined; but I don’t think
this is really the problem with implementing the above algorithm.)

On the other hand: this is not a terribly useful algorithm. In
particular, its steps are in some sense “too big” to be of any use:
they reduce the problem of proving the Riemann hypothesis to
. . . proving the Riemann hypothesis. Typically, we’ll want to limit
the steps in our algorithms to simple, mechanically-reproducible
steps: i.e. operations that a computer could easily perform, or
operations that a person could do with relatively minimal training.

In practice, the definition of “simple” depends on the context in
which you are creating your algorithm. Consider the algorithm
for making pancakes, given at right. This algorithm’s notion of
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“simple” is someone who is (1) able to measure out quantities
of various foods, and (2) knows the meaning of various culinary
operations like “whisk” and “flip.” If we wanted, we could make
an algorithm that includes additional steps that define “whisking”
and “flipping”: i.e. at each step where we told someone to whisk
the flour, we could instead have

(a) Grab a whisk. If you do not know what a whisk is, go to
this Wikipedia article and grab the closest thing to a whisk
that you can find. A fork will work if it is all that you can
find.

(b) Insert the whisk into the object you are whisking.

(c) Move the whisk around through the object you are whisking
in counterclockwise circles of varying diameter, in such a
fashion to mix together the contents of the whisked object.

In this sense, we can extend our earlier algorithm to reflect a
different notion of “simple,” where we no longer assume that our
person knows how to whisk things. It still describes the same sets
of steps, and in this sense is still the “same” algorithm – it just
has more detail now!

This concept of “adding” or “removing” detail from an algorithm
isn’t something that will always work; some algorithms will simply
demand steps that cannot be implemented on some systems. For
example, no matter how many times you type “sudo apt-get 2
cups of flour,” your laptop isn’t going to be able to implement our
above pancake algorithm. As well, there may be times where a
step that was previously considered “simple” becomes hideously
complex on the system you’re trying to implement it on!

We’re not going to worry too much about the precise definition
of “simple” in this class, because we’re not writing any code here
(and so our notion of “simple” isn’t one we can precisely nail
down!) Instead, we’re going to just make sure that our algorithms
consist of steps that we understand, and focus instead on trying
to prove that these algorithms produce the desired output.

For instance, consider the following algorithm to find the prime
factorization of any integer n ≥ 2:

Current step n f Next step Output
Initialization 90 2 1

1 45 2 1 2
1 2
2 3 1
1 15 1 3
1 5 1 3
1 2
2 4 1
1 2
2 5 1
1 1 1 5
1 2
2 (halt)

Init: Take in as input any integer n that is at least 2. Initial-
ize our “factor” variable f to be equal to 2.

1. If f | n, print “f .” Then replace n with n
f , and go to 1.

2. Otherwise, if f - n:
(a) If n = 1, halt.
(b) Otherwise, replace f with f + 1 and go to 1.

To illustrate this algorithm, we run it on the input n = 90 at
right. Its outputs were the numbers 2, 3, 3, 5, which in product
form 2 · 3 · 3 · 5 = 90, as desired!

We seek to prove that this algorithm will always work: that is,
that for any positive integer n ≥ 2 this process will generate a
prime factorization of n. To do this, we will prove the following
three properties:

• First, we will prove that this process always halts: that is,
if we input any integer n ≥ 2 into this process, it will not
run forever and will eventually halt.

• Then, we will prove that this process does not crash: that is,
we will prove that every step of this process is well-defined,
and we never have any steps where we’re dividing by 0 or
claiming that something exists when it doesn’t.
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• Finally, we will prove that the process’s outputs have the
desired property: that is, we will prove that the outputs
of this process actually form a prime factorization of n.

In general, most proofs that a given algorithm “works” will have
this sort of feel! Ensuring that a given program doesn’t either
loop forever or crash is typically the first two things anyone does
when debugging. With that out of the way, we can typically turn
to actually studying the outputs, and from there prove that it has
the desired properties.

We prove these three properties one-by-one here:

Claim. The prime factorization algorithm given earlier does not
“crash:” that is, given any integer n ≥ 2, every step in this algo-
rithm is well-defined throughout its run.

Proof. The only comparisons and operations we perform in our
algorithm are the following:

• At the start, we initialize f to be equal to 2.

• We repeatedly check if f | n; this is well-defined, as n is an
integer and f is a positive integer (it starts at 2 and increases
by increments of 1 from there.)

• If f | n, we replace n with n
f . By definition, this is well-

defined if f | n.

• If f - n, we check if n = 1; if n 6= 1, we add 1 to f . This is
trivially a well-defined operation.

Claim. The prime factorization algorithm given earlier does not
“run forever:” that is, given any integer n ≥ 2, this algorithm will
eventually halt on input n.

Proof. First, notice that if our algorithm eventually halts on input
n, it does so because n was reduced to 1. The only way that n
ever changes in our algorithm is if in step 1 we replace n with
n
f ; therefore, if n is ever reduced to 1, on the loop20 prior to this
happening we had n = f .

Therefore, it suffices to show that given any integer n, our algo-
rithm eventually sets n = f .

To see why this must hold, notice that at the start of our algorithm
we have n ≥ f , as n ≥ 2 by assumption and f = 2. In the case
where n = f = 2 we’re immediately done, so we can in fact assume
that n > f at the start of our algorithm. As well, on each loop of
our algorithm we either decrease n (by dividing it by f) or increase
f ; so eventually at some point in time we will have n ≤ f .

If we transition to n ≤ f by using the f → f +1 step, then at this
time we have n = f . This is because n and f are integers; so, if
we originally had n > f , then n is at least 1 greater than f , and
so adding 1 to f can make n and f equal at best.

So the only remaining case to study is if our algorithm goes from
n > f to n ≤ f by using the n → n

f step. I claim that in this

scenario, it is impossible for n
f to be less than f (and therefore

after this step we have n = f , as desired.)

20In an algorithm, we typically have a sequence of steps, each of which
either leads into a “next” step or returns to an earlier step. A loop of an
algorithm, roughly speaking, is a sequence of steps from one of those start
steps until we return to another of those start steps. In the algorithm we’re
studying here, there are two possible loops: we could do 1 → 1 if f | n, or
1→ 2→ 1 otherwise.
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To see why, we proceed by contradiction: suppose that we had
positive integers n, f such that n > f and yet n

f < f . Let n
f = d,

for shorthand. Then the observation here means that we can write
n = d · f , where d is a factor of n that is at least 2 (because n >
f ⇒ n

f > 1) and strictly less than f (by contradictive assumption.)

However, we know that we started f at 2 and increased it one-by-
one to its current size; as a result, at a strictly earlier stage the
value stored in f must have been equal to d. But at that stage,
our algorithm would have repeatedly divided n by d until there
were no factors of d left in n! In other words we’ve shown that
it’s impossible for d to be a factor of n if d < f , which contradicts
our assumption earlier.

This completes our proof, as we’ve shown that in all cases we
eventually get to a case where our algorithm halts.

Perhaps surprisingly, the proof that our algorithm always halts
is the hardest of our three; with this established, proving that
the algorithm actually generates a prime factorization is relatively
simple!

Claim. Given any integer n ≥ 2, the prime factorization algo-
rithm given earlier will output a prime factorization of n.

Proof. At any step of our algorithm, consider the value formed by
multiplying the value currently stored in n by all of the outputs
generated by our algorithm so far. At the start, this is just n; after
each time n changes this is still n (because we replace n by n

f and

output f , the product of these terms doesn’t change!), and at the
end it is just the product of all of the outputs of our program (as
n = 1 by the end.)

Therefore this program creates a factorization of n into integers.
The only question, then, is whether they are all primes!

To see why each output f must be a prime number, consider what
happens for any nonprime f . Because f starts off as 2 and grows
one-by-one, if f is not prime it is also not 1 and so is composite,
and thus we can write f = ab for two positive integers a, b ≥ 2.

However, because f started at 2 and grew until it was ab, along
the way it was equal to both a, b and at that stage we repeatedly
divided n by a, b until none of those factors remained in n. As
a result, when we get to f = ab, we know that n no longer has
any factors of either a or b left in it, and so must have f - n!
Therefore we never print any composite value of f ; i.e. the only
values printed are primes, as desired.

Success! With this first algorithm thoroughly studied, we move
to our next target:

2.2 The Euclidean Algorithm

Definition. Given two integers a, b, we say that the greatest
common divisor of a and b, denoted gcd(a, b), is the largest
integer d such that d | a and d | b. Similarly, we say that the
least common multiple lcm(a, b) of two integers is the smallest
positive integer divisible by both a and b.

For example:

• gcd(6, 4) = 2; this is because 2 divides both of these num-
bers, while no larger integer divides both of these numbers
(the only larger divisor of 6 is 6 itself, which does not divide
4.)

• Similarly, gcd(18, 36) = 18, gcd(17, 21) = 1 and gcd(27, 75) =
3.
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• gcd(0, n) = n for any positive integer n; this is because n | 0
for any n (as noted before!) Similarly, gcd(1, n) = 1 for any
integer n, as the only positive divisor of 1 is 1 (which divides
all other integers.)

• If gcd(a, b) = d, then gcd(a/d, b/d) = 1; this is because d
contained all of the common factors between a and b, and
so dividing by d leaves these numbers with no factors in
common at all.

• lcm(4, 6) = 12; this is because 12 has both 4 and 6 as factors,
and no positive smaller multiple of 4 has 6 as a factor.

• Similarly, lcm(18, 36) = 36, lcm(5, 7) = 35 and lcm(8, 28) =
56.

We say that two numbers a, b are relatively prime if gcd(a, b) =
1; this means that they have no factors in common.

Calculating the GCD of two numbers is a remarkably useful op-
eration to be able to do:

• If you have a fraction a
b , a task we often want to do is “sim-

plify” this fraction: that is, to write it as a ratio in which the
numerator and denominator have no factors in common. For
example, we typically would prefer to write something like
2
3 in place of 34

51 or 14
21 , even though they’re all the “same”

thing.

The GCD lets us do this! Specifically, given any fraction
a
b in which the numerator and denominator are integers, if

d = gcd(a, b), then a/d
b/d is the “simplified” form of a

b .

• A task that comes up frequently in cryptography is finding
two numbers a, b that are relatively prime: i.e. whose GCD
is 1. (We don’t have time to get into it here, but read up on
RSA cryptography for more on this!)

• In real life, we often have problems of the form “you have
sets of size d1, d2, . . . dk, and want to divide all of these sets
into blocks of the same size.” For instance:

– You have a 244 × 176 bolt of cloth, and want to chop
it up into k× k squares. What is the largest value of k
for which you can do this?

– You have 720 daisies, 96 roses, 80 lilies and 128 lilacs.
You want to arrange these into k bouquets, each of
which has the same number of daisies, roses and lilacs.
What is the largest number of bouquets you can make,
and what flowers go into each bouquet?

– You’re a teacher, and have three streams of the same
class with enrolment numbers 312, 177 and 243 respec-
tively. You want to divide students in each stream into
groups, and want to have the same group size for all
groups across all classes. What is the largest value of
k that you can set the group sizes to?

In all of these situations, the GCD of the numbers d1, . . . dk
is the largest block size that you can pick, and solves this
problem.

In this section, we present an algorithm for calculating the GCD
of two numbers: namely, the Euclidean algorithm! To define it,
we first describe a handful of useful operations:

Definition. Given two positive integers a, b, we say that the quo-
tient of a

b is
⌊
a
b

⌋
,=i.e. the quotient is a

b “rounded down.” Simi-
larly, the remainder of ab is b times the difference between a

b and
its quotient.
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Equivalently, we say that the quotient of ab is the largest number
of times q we can subtract b from a and still have a nonnegative
integer left over, and the remainder is just what’s left after we
do that subtraction (i.e. the remainder is a− qb.)

For example, the quotient of 34
5 = 6 . This can be seen by using

the first definition (because
⌊

34
5

⌋
= b6.8c = 6), or the second (we

can subtract 5 from 34 six times, and will be left with 4 at the
end of this process, from which we cannot take away another 5
and still have a nonnegative integer.) As well, the remainder of
34
5 is 4 ; this can be seen by either the first definition (because

5 · (6.8 − 6) = 5 · .8 = 4) or the second (after subtracting 5 from
34 six times, we had 4 left over.)

We prove that these definitions are equivalent here:

Claim. The above definitions for the quotient and remainder are
equivalent.

Proof. Take any two positive integers a, b.

Observe that if q =
⌊
a
b

⌋
, then by the definition of “rounding down”

we have 0 ≤ a
b − q < 1. Multiplying through by b gives us 0 ≤

a− bq < b. This means that q is the largest multiple of b that we
can subtract from a and still have a nonnegative value left over,
because subtracting one more copy of b from all sides would give
us a− (b + 1)q < 0. In other words, any quotient q that satisfies
the first of our definitions satisfies the second, as well!

Similarly, if q is the largest number of copies of b we can take
away from a and still have a positive value, then 0 ≤ a − bq < b
by definition. Reversing the steps above gives us 0 ≤ a

b − q < 1;
i.e. q is a

b “rounded down,” and thus that these definitions are
actually equivalent.

Similarly, if we let r = b
(
a
b − q

)
be the remainder under our first

definition, then simplifying the right-hand side gives us r = a− bq
(i.e. the second definition of the remainder); so these definitions
are also equivalent.

As a consequence of the above, we have the following:

Corollary 2. For any two positive integers a, b, if q is the quotient
of a

b and r is the remainder, then a = bq + r, and 0 ≤ r < b.

Proof. Take any two positive integers a, b, and let q, r be the quo-
tient and remainder of ab . We saw above that a− bq = r, and that
0 ≤ a− bq < b; therefore we have 0 ≤ r < b. As well, rearranging
a− bq = r gives us a = bq + r, as desired.

The quotient and remainder are nicely related to the process of
finding the GCD of two numbers, as the following lemma shows:

Lemma. For any two positive integers a, b, if r is the remainder
of a

b , we have gcd(a, b) = gcd(b, r).

Proof. To prove that these two pairs have the same greatest com-
mon divisor, we’ll actually go one step further and prove that each
pair’s set of divisors are the same! That is: let

Da,b = {d ∈ N | d | a and d | b},
Db,r = {d ∈ N | d | b and d | r},

We seek to show that these sets are the same. Notice that if we
can do this, then clearly the largest element in these sets must be
the same. Because Da,b is the set of all divisors common to a, b
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and Db,r is the set of all divisors common to b, r, this would mean
that gcd(a, b) = gcd(b, r), as desired.

We do this in two steps:

• Take any d ∈ Da,b. By definition, this means that d | a and
d | b; i.e. that we can find integers k, l such that dk = a
and dl = b. We know that a− bq = r from our work above;
therefore we have dk − dlq = r, i.e. d(k − lq) = r. In other
words d is a divisor of r!

This means that d ∈ Db,r, as we’ve just shown that d is a
divisor of both b and r. In other words, every element of
Da,b is also in Db,r; that is, Db,r “contains” all of Da,b!

• Now, we reverse this process: take any d ∈ Db,r. By def-
inition, this means that d | b and d | r; i.e. that we can
find integers m,n such that dm = b and dn = r. We know
that a = bq + r from our work above; therefore we have
a = dmq + dn, i.e. a = d(mq + n). In other words d is a
divisor of a!

This means that d ∈ Da,b, as we’ve just shown that d is a
divisor of both a and b. In other words, every element of
Db,r is also in Da,b; this observation, plus our earlier work,
tells us that Da,b = Db,r, as desired.

We can use this result to define the Euclidean algorithm, a fast
and efficient way to calculate the GCD of any two numbers:

Definition. The Euclidean algorithm is the following process
for calculating the GCD of two positive integers a, b:

Init: Take in as input any two positive integers a, b. Initialize
r by setting it equal to the remainder of a

b .
1. If r = 0, halt, and print b.
2. Otherwise, replace a with b, replace b with r, and recal-

culate r on this new pair of values a, b.

As before, we have three tasks that we must perform to prove
that this algorithm works: we must prove that its steps are well-
defined, that the program eventually halts, and that its output
is indeed correct (in this case, that it calculates the GCD.) We
do this here:

Claim. The Euclidean algorithm does not “crash:” that is, given
any two positive integers a, b, every step of the Euclidean algo-
rithm is well-defined.

Proof. The only comparisons and operations we perform in our
algorithm are the following:

• We initialize r by setting it equal to the remainder of a
b ;

because a, b are both positive integers, this is well-defined
as shown before.

• On each step, if r 6= 0, we simply replace a with b, b with r,
and recalculate r as the remainder of this new pair of values
a, b. Because each remainder r is nonnegative and we only
go to this step if r 6= 0, we know that this new pair of values
for a, b are still positive integers, and so the remainder is
still well-defined.
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Claim. The Euclidean algorithm does not “run forever:” that is,
given any two positive integers a, b, the Euclidean algorithm will
eventually halt.

Proof. This is actually pretty straightforward! Look at the value
stored in the “b” slot. On each loop, we replace b with r, which is a
nonnegative integer strictly less than r (as shown before.) There-
fore, the value in b decreases on each loop, but stays nonnegative.
Similarly, because the remainder r we calculate is always nonneg-
ative but less than b, the remainder values r must also decease
but stay nonnegative.

Therefore, this process must eventually stop; if the remainders
are decreasing, integers, and nonnegative at each step, then they
must eventually become 0.

Claim. Given any two positive integers a, b, the Euclidean algo-
rithm outputs the GCD of a and b.

Proof. Recall that as shown before, if a, b are any two positive
integers and r is the remainder of a

b , then gcd(a, b) = gcd(b, r).
Therefore, on each loop of the Euclidean algorithm, the GCD of
the values stored in the a, b values does not change!

At the start, this value is the GCD of our two inputs, by definition.
At the end, this value is gcd(b, 0), because we halt precisely when
r = 0. As noted before, gcd(b, 0) = b. But b is the value we
output! Therefore, our algorithm works, as claimed.

Success! We’ve proven that this algorithm works.

2.3 Modular Arithmetic

We close our discussion of the integers with one last, remarkably
useful concept: the idea of modular arithmetic.

Definition. Take any three integers a, b, n ∈ Z. We say that a is
equivalent to b modulo n, and write a ≡ b mod n, if a− b is a
multiple of n.

For example,

• 21 ≡ 5 mod 8; this is because 21−5 = 16 = 2·8 is a multiple
of 8.

• −19 ≡ 7 mod 2; this is because −19− 7 = −26 = (−13) · 2
is a multiple of 2.

• 14 6≡ 18 mod 5; this is because −14 − 18 = −4 is not a
multiple of 5.

• For any a, b ∈ Z, a ≡ b mod 1; this is because a−b is always
a multiple of 1 (as any integer is a multiple of 1!)

• For any a, b ∈ Z, we only have a ≡ b mod 0 if a = b, and
have a 6≡ b mod 0 otherwise. This is because a ≡ b mod 0
means that a− b is a multiple of 0, and the only multiple of
0 is 0 itself; i.e. we’d have a− b = 0, which forces a = b.

• For any a, b ∈ Z, we have a ≡ b mod 2 if and only if a, b are
both even or a, b are both odd. This is because a ≡ b mod 2
holds if and only if a− b is a multiple of 2, i.e. a− b is even,
and this only happens when a, b are the same parity: i.e.
when they’re both even or both odd.

Modular arithmetic is remarkably useful for a number of things:
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• Calculating remainders modulo n is key to essentially the
entire field of cryptography; there is essentially no way to
keep information secret in the modern world that does not
use modular arithmetic in some way.

• Modular arithmetic is also used in every sort of “checksum”
property. That is: in essentially every piece of information in
the modern world (bar codes, bank account numbers, library
book numbers), you will find a few extra digits appended to
the end calculated by taking your information mod n for
some value of n to help someone look for errors. We’ll talk
more about this in the error-correcting codes section!

• Working modulo 2 is fundamental to arithmetic and working
with binary strings, the foundation of modern computing!

To help us get some practice with modular arithmetic, we work
two problems here: one abstract / proof-oriented, and one that’s
just cute and short:

Claim. If a ≡ b mod n and c ≡ d mod n, then a + c ≡ b +
d mod n, ac ≡ bd mod n, and ak ≡ ck mod n for any positive
integer k. In other words, we can “perform arithmetic” modulo
n.

Proof. Note that by definition, if a ≡ b mod n then a − b is a
multiple of n; that is, we can write a − b = kn for some integer
k. Similarly, if c ≡ d mod n, then c− d is a multiple of n, and we
can write c− d = ln for some integer l.

By adding these equations together, we get (a + c) − (b + d) =
kn+ ln = (k + l)n; that is, that (a+ c)− (b+ d) is a multiple of
n. This means that a+ b ≡ c+ d mod n, as desired.

Conversely, if we take a − b = kn and multiply both sides by c,
we get ac− bc = kcn; similarly, if we take c− d = ln and multiply
by b we get bc− bd = bln. Adding these equations together gives
us ac − bc + bc − bd = kcn + bln = (kc + bl)n; i.e. ac − bd is a
multiple of n. This means that ac ≡ bd mod n, as claimed.

Finally, take our result that ac ≡ bd mod n and consider the case
where c = a, d = b. This tells us that if a ≡ c mod n then
a2 ≡ c2 mod n. Now, combine the statements a ≡ c mod n and
a2 ≡ c2 mod n; this gives you a3 ≡ c3 mod n. Repeatedly doing
this gives you ak ≡ ck mod n, as desired.

Claim. The last digit of 213047129314 is 9.

Proof. The clever thing here is not that we can calculate this (if
we just wanted an answer, we could plug this into WolframAlpha),
but rather that we can calculate this easily ! That is: we can use
modular arithmetic to find this number with almost no calculation
or effort.

To do so, make the following observations:

• First, 213047 ≡ 7 mod 10, and in general any number is
equivalent to its last digit modulo 10. This is by definition:
any number minus its last digit will have a last digit of 0,
which means it’s a multiple of 10!

• Therefore, we have that 213047129314 ≡ 7129314 mod 10, by
using our “exponentiation” result from earlier.

• Now, notice that 72 = 49 ≡ 9 mod 10, and thus that 74 =
72 · 72 ≡ 9 · 9 mod 10. 9 · 9 = 81 ≡ 1 mod 10, so we we have
that 74 ≡ 1 mod 10. As a result, we have that for any k,
74k = (74)k ≡ 1k = 1 mod 10
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• Therefore, because 129314 = 129300 + 12 + 2, and any
multiple of 100 is a multiple of 4, we have that 7129314 =
72 · 7a multiple of 4 ≡ 72 · 1 mod 10. 72 ≡ 9 mod 10, as noted
before; therefore our entire expression is equivalent to 9
modulo 10.

• Finally, as noted before: any number is congruent to its last
digit modulo 10. Therefore, because we’ve shown that our
number 213047129314 is congruent to 9 modulo 10, we know
that its last digit is 9, as claimed.
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Chapter 3: Induction
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3.1 Induction: Definitions

Sometimes, in mathematics, we will want to study a statement
P (n) that depends on some variable n. For example:

1. P (n) = “The sum of the first n natural numbers is n(n+1)
2 .”

2. P (n) = “If q ≥ 2, we have n ≤ qn.

3. P (n) = “Every polynomial of degree n has at most n roots.”

4. P (n) = Take a 2n × 2n grid of unit squares, and remove
one square from the top-right-hand corner of your grid. The

resulting shape can be tiled21 by - shapes.

For any fixed n, we can usually use our earlier proof methods to
prove that the claim holds! For instance, let P (n) be the fourth
example above, and consider P (3), which is the claim that if we
take a 8× 8 grid of squares and delete the top-right-hand corner

square, we can tile the rest of the shape with tiles. We can
prove this by construction by just giving an explicit way to do it:
see the drawing at right!

However, sometimes we will want to prove that one of these state-
ments holds for every value n ∈ N. How can we do this?

The answer here is mathematical induction! Mathematical
induction is just a formal way of writing up our “building-block
plus preserved property” process, in a way that will hopefully let
us avoid everyone having the same shoe size. We describe it here:

• To start, take a claim P (n) that we want to prove holds for
every n ∈ N.

• The first step in an inductive proof is the base step: in
this step, we explicitly prove that the statement P holds
for a few small cases using normal proof methods (typically
construction or just calculation.)

Usually you just prove P (0), but sometimes you start with
P (1) if your claim is one where 0 is a “dumb” case, or prove a
handful of cases like P (0), P (1), P (2), P (3) to get the hang
of things before moving on. You can think of this as the
“building block” step from before!

• With this done, we move to the induction step: here, we
prove the statement

∀n, if P (k) holds for all k ≤ n, then P (n+ 1) also holds.

Because this is an implication, i.e. an if-then proof, we usu-
ally prove it directly by assuming that P (k) holds for all
k ≤ n (i.e. start with the “if”), and use assumption this to
conclude that P (n+ 1) holds (conclude with the “then.”)

Once we’ve done these two steps, I claim that we’ve proven that
P (n) holds for all n ∈ N! To see why, take any natural number
n, like n = 17 or n = 3 · 108. If you want to see why P (n) holds,
simply use the following logic:

21We say that a shape S can be tiled by a tile T if you can completely cover
all of S with copies of T , so that none of those copies overlap or stick off the
side of S. You’re allowed to rotate and flip the tile T when doing this.
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• By our “base case” reasoning, we know that P (0) is true.

• Because
(
P (0) and P (1) and . . . and P (n)

)
⇒ P (n + 1), if

we let n = 0, this tells us that P (0)⇒ P (1). Because P (0)
is true, this means P (1) is true.

• Again, because
(
P (0) and P (1) and . . . and P (n)

)
⇒ P (n+

1), if we let n = 1, this tells us that
(
P (0) and P (1)

)
⇒

P (2); so because we know that P (1) is true, this means P (2)
is true as well!

• Similarly, P (0), P (1) and P (2) tell us P (3) is true,
• . . . which tells us P (4) is true,
• . . . which tells us P (5) is true,
• . . .
• . . . which eventually tells us that P (n) is true, for every n!

Sometimes people will call this kind of induction strong induc-
tion. By contrast, in “weak induction” we proceed as follows:

• Base case: as before, we prove our claim for P (0), or maybe
for the first few values where our claim is true.

• Inductive step: we prove that P (n)⇒ P (n+ 1).

The difference here is just in the inductive step: in this form of
induction, you only use the fact that P (n) is true to prove P (n+1)
is true, while in strong induction you get to remember “hey, I’ve
actually proved this for P (0) and P (1) and . . . all the way up
to P (n)” when you try to prove P (n + 1) also holds. In this
sense, weak induction is strictly less useful than strong induction:
all strong induction does is just give you more facts to use when
you’re doing your inductive step! However, many inductive proofs
can be done with just “weak” induction; so if you’re just using the
P (n) case in your inductive step, don’t worry!

The way I usually think of inductive proofs is to think of toppling
dominoes. Specifically, think of each of your P (n) propositions
as individual dominoes – one labeled P (0), one labeled P (1), one
labeled P (2), and so on/so forth. With our inductive step, we are
insuring that all of our dominoes are lined up – in other words,
that if we’ve knocked over some of them, the “next one” will
also be knocked over. Then, we can think of the base step as
“knocking over” the first domino. Once we do that, the inductive
step makes it so that all of the later dominoes also have to fall,
and therefore that our proposition must be true for all n (because
all the dominoes fell!)

3.2 Induction: Two Examples

To illustrate how these kinds of proofs go, let’s go back to our
tiling problem, and prove that we can tile this grids for every
n ∈ N! (As an added bonus, let’s prove it for grids where we
remove one square from anywhere, not just the top-right-hand
corner!)

Claim. For any n ∈ N, take a 2n × 2n grid of unit squares, and
remove one square from somewhere in your grid. The resulting

grid can be tiled by - shapes.

Proof. As suggested by the section title, we proceed by induction,
where our proposition P (n) is “we can tile a 2n× 2n grid of 1× 1

squares with one square deleted by using - shapes.”

Base case: we want to prove P (0). So: what *is* P (0)?

Well: for n = 0, we have a 20 × 20 = 1 × 1 grid, which we’ve
removed a 1 × 1 square from. In other words, we have nothing.
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If you want, you can think of “nothing” as being something we
can trivially cover by placing no three-square shapes!

Alternately, you can decide that 0 is a stupid case and look at
n = 1 instead. For n = 1, we simply have a 2 × 2 grid with one
square punched out. As this *is* one of our three-square shapes,
we are done here; just place a tile on top of our grid!

Either starting place is fine. In general, I recommend doing as
many base cases as you need to do in order to feel comfortable
with the pattern and believe that you’ve done something concrete!
Most of the time, though, the base case will feel kinda silly; don’t
worry about this! The inductive step will do all of the heavy lifting
for us.

Inductive step: We want to prove that if we know that our claim
holds up to n, then it holds for n+ 1 as well; formally, this means
that we want to show that if P (0) and P (1) and . . . and P (n) all
hold, then P (n+ 1) must follow.

In this problem in particular, this means that we’re assuming that
we can tile a 2k × 2k-grid with a square deleted for any k ≤ n,
and want to use this assumption to tile a 2n+1× 2n+1 grid with a
square deleted.

To do this, take any 2n+1×2n+1 grid with a square deleted. Divide
it into four 2n × 2n squares by cutting it in half horizontally and
vertically. Finally, by rotating our grid if needed, make it so that
the one missing square is in the upper-right hand corner.

Take this grid, and carefully cut out one three-square shape in the
center as drawn at right.

Now, look at each of the four 2n × 2n squares in this picture.
They all are missing exactly one square: the upper-right hand
one because of our original setup, and the other three because of
our placed three-square-shape.

By our inductive hypothesis P (n) we know that all of these smaller
squares can be tiled! Doing so then gives us a tiling of the whole
shape; in other words, we’ve shown how to use our P (n) results
to get a tiling of the 2n+1 × 2n+1 grid.

As this completes our inductive step, we are thus done with our
proof by induction.

The claim we proved above — one where we were some sense
“growing” or “extending” a result on small values of n to get to
larger values of n— is precisely the kind of question that induction
is set up to solve! The Fibonacci numbers, which we introduce in
the next question, is another object where this sort of “extension”
approach is useful to consider.

Definition. The Fibonacci numbers fn are defined as follows:

• f0 = 0, f1 = 1.
• For any n ≥ 2, fn = fn−2 + fn−1.

This sort of definition is called a recursive22 definition23. To
illustrate how it works, let’s use it to calculate the first few values
of the Fibonacci sequence! We know that f0 = 0, f1 = 1 by
definition.

To find f2, we can use the fact that for any n ≥ 2, fn = fn−2+fn−1

to calculate that.

f2 = f0 + f1 = 0 + 1 = 1.

We can calculate further values of fn similarly (see right!)

f3 = f1 + f2 = 1 + 1 = 2,

f4 = f2 + f3 = 1 + 2 = 3,

f5 = f3 + f4 = 2 + 3 = 5,

f6 = f4 + f5 = 3 + 5 = 8,

f7 = f5 + f6 = 5 + 8 = 13,

f8 = f6 + f7 = 8 + 13 = 21,

f9 = f7 + f8 = 13 + 21 = 34,

f10 = f8 + f9 = 21 + 34 = 55,

f11 = f9 + f10 = 34 + 55 = 89,

f12 = f10 + f11 = 55 + 89 = 144,

.

.

.

When doing this, you’ll likely notice a number of interesting prop-
erties about the Fibonacci sequence: see

22For a definition of recursion, see footnote 23.
23For a definition of recursion, see footnote 22.
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for a ton of weird/beautiful properties these numbers have! We
prove one of these properties here:

Claim: For any n ∈ N, the n-th Fibonacci number is even if
and only if n is a multiple of 3.

Proof. Let P (n) denote the claim “(the n-th Fibonacci number
is even) ⇔ (n is a multiple of 3).” We want to prove that P (n)
holds for all n ∈ N, and proceed to prove this claim by induction.

Our base cases are pretty easy to check! We calculated the
Fibonacci numbers from f0 to f12 above, and we can see that the
only ones that are even are f0, f3, f6, f9 and f12; so we know that
P (0), P (3), P (6), P (9), and P (12) all hold.

We now move to the inductive step: here, we want to prove
(P (0) ∧ P (1) ∧ P (2) ∧ . . . P (n))⇒ P (n+ 1). We start with what
we’re assuming, namely P (0) ∧ P (1) ∧ . . . ∧ P (n): that is, we’re
assuming that the k-th Fibonacci number is even if and only if it
is a multiple of 3, for every k ∈ {0, 1, . . . n}.
We want to prove P (n+1), i.e. that the n+1-th Fibonacci number
is even if and only if it is a multiple of 3.

So: let’s consider cases! There are two possible cases for the value
n+ 1: either it is a multiple of 3, or it’s not.

• If n + 1 is a multiple of 3, we can write n + 1 = 3k for
some k ∈ Z. Notice that this means that n = 3k − 1 and
n − 1 = 3k − 2, and in particular that both of the values
n, n− 1 are not multiples of 3!

As a result, our inductive assumption tells us that fn, fn−1

are both not even, because they’re not multiples of 3! But
being not-even just means that these numbers are both odd.
As a result, because fn+1 = fn + fn−1 =odd+ odd= even,
we have shown that fn+1 is even in this case.

• If n+1 is not a multiple of 3, then n+1 either has remainder
1 or 2 when we divide it by 3; this is because any number
has remainder 0, 1 or 2 when divided by 3. This means we
can write n+ 1 = 3k + 1 or 3k + 2, for some k ∈ Z.

As a result, we can see that of the two numbers n, n − 1,
exactly one of them is a multiple of 3; if n + 1 = 3k + 1
then n, n − 1 = 3k, 3k − 1, and if n + 1 = 3k + 2 then
n, n− 1 = 3k + 1, 3k. As a result, our inductive hypothesis
tells us that exactly one of fn, fn−1 are odd, and the other
is even.

Therefore, because fn+1 = fn + fn−1 =(one odd number
plus one even number)= odd, we have shown that fn+1 is
odd in this case.

So, by using strong induction, we have proven that fn is even if
and only if it is a multiple of 3!

We’ll use induction several times in our next subject, graph the-
ory; so if you’d like more examples, read on!
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Compsci 225 Lecturer: Padraic Bartlett

Chapter 4: Graph Theory
Weeks 5-6 UoA 2018

4.1 Where it all started: Königsberg

A map of Königsberg, c. 1730.

Consider the following problem:

Puzzle. The city of Königsberg is divided by the river Pregel
into four parts: a northern region, a southern region, and
two islands. These regions were connected by seven bridges,
drawn in red in the map at right.

Can you come up with a path through the city that starts and
ends at the same place, and walks over each bridge exactly
once?

This problem was something that the inhabitants of the city had
tried to solve for some time; as a result it became somewhat fa-
mous, and came to the attention of Leonhard Euler (arguably the
most prolific mathematician in history.) To solve it, he started the
field of graph theory; a branch of mathematics centered around
studying objects and the connections between them.

While graph theory was originally seen as being a recreational
branch of mathematics with few applications beyond coloring maps,
in recent years its power to describe networks has made it the per-
fect tool for studying many problems in the modern world. Graphs
can be used to model the internet, social networks, the spread of
diseases through a population, travel, computer chip design, and
countless other phenomena; they are everywhere

In short, graph theory is amazing. In these notes, we’ll start by
building up some definitions that will let us talk about graphs and
their properties; from there, we’ll move to solving various famous
problems in graph theory, ranging from the Bridges of Konigsberg
to more recent phenomena such as the traveling salesman problem,
the shortest path problem, and the graph isomorphism problem.
These notes are just the tip of the iceberg; if you’re interested
in further resources, books like Douglas West’s Graph Theory
have an immense wealth of problems, theorems and applications!
Also feel free to talk to me; I love this stuff!

4.2 What is a graph?

A graph is just any way of modeling a collection of objects and
the connections between them. Here is one way to do this:

Definition.

a

b

cd

e

a

b

cd

e

a b c d e

A simple graph G consists of two things: a set V
of vertices, and another set E of edges, which we think of as
distinct unordered pairs of distinct elements in V .

For example, the following describes a graph G:

• V = {a, b, c, d, e}
• E = {{a,b}, {b,c}, {c,d}, {d,e}, {e,a}}

Given a graph G = (V,E), we can visualize G by drawing its
vertices as points on a piece of paper, and its edges as connections
between those points. Several ways of drawing the graphG defined
above are drawn at right.

Notice that edges don’t have to be straight lines, and that we
allow them to cross!

Just as there are many different ways to model the connections
between a set of objects, there are other notions of graphs beyond
that of a simple graph. Here are some such definitions:
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Definition.

A multigraph
on four vertices.

A simple graph with loops
on five vertices.

A directed graph on seven vertices.

A simple graph with loops is just like a simple
graph G, except we no longer require the pairs of elements in E
to be distinct; that is, we can have things like {v, v} ∈ E.

A multigraph is a simple graph, except we allow ourselves to
repeat edges in E multiple times; i.e. we could have three distinct
edges e1, e2, e3 ∈ E with each equal to the same pair {x, y}.
A directed graph is a simple graph, except we think of our edges
as ordered pairs: i.e. we have things like (x, y) ∈ E, not {x, y}.

You can mix-and-match these definitions: you can have a directed
graph with loops, or a multigraph with loops but not directions,
or pretty much anything else you’d want!

In this course, we’ll assume that graph means simple graph unless
explicitly stated otherwise, and work mostly with simple graphs.

4.3 Famous graphs

There are many graphs that come up frequently in mathematics!
Several families of these graphs are listed here:

K3 K4 K5 K6

Definition. The complete graph on n vertices Kn is defined
as follows:

• V = {v1, v2, v3, . . . vn}.
• E = {{vx,vy} | x, y ∈ {1, 2 . . . n}, x 6= y}

K4,3 K2,2 K1,6

The complete bipartite graph on m,n vertices Km,n is defined
as follows:

• V = {v1, v2, v3, . . . vm} ∪ {w1, w2, w3 . . . wn}.
• E = {{vx,wy} | x ∈ {1, 2 . . . n}, y ∈ {1, 2, . . .m}}

C3 C4 C5 C6

The cycle graph on n vertices Cn is defined as follows:

• V = {v1, v2, v3, . . . vn}.
• E = {{v1,v2}, {v2,v3}, {v3,v4}, . . . {vn−1,vn}, {vn,v1}}

4.4 Graph properties: degree, walk, circuits

When we study objects using graph theory, there are certain prop-
erties that come up all of the time! We’ll introduce useful proper-
ties throughout these notes, but three key ones to start with are
the following:

Definition. In a graph G = (V,E), we say that an edge {x, y} ∈
E has x and y as its endpoints. We also say that a vertex v ∈ V
has degree m if there are exactly m different edges in E that
have v as an endpoint.

a b c d

e f g
A walk from e to g on the graph K4,3.

Definition. In a graph G = (V,E), we define a walk24 of length
n to be any sequence of n edges {v0, v1}, {v1, v2}, {v2, v3}, . . . , {vn−1, vn},
all in E. We say that this walk starts at v0 and ends at vn.

If v0 = vn, we call this walk a circuit.

If every edge in E shows up exactly once in the walk, then we call
our walk an Eulerian walk.

If there is a walk connecting any two vertices x, y ∈ V , we say
that G is connected.

Converting Königsberg to a graph.

With this language at hand, we can turn the bridges of Königsberg
problem into a task in graph theory! Specifically: consider the
multigraph G = (V,E) drawn at right, given by letting each of
the four regions of land be a vertex, and representing the seven
bridges as edges connecting these vertices.

24Note: your coursebook calls these things paths. This is someone non-
standard, as most authors require that a path does not repeat any vertex,
which the coursebook doesn’t require. For this course, feel free to use either
term interchangeably; we won’t mark you down regardless of which you use.
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In the language of graph theory that we’ve built up, finding a path
that starts and ends at the same place and walks over each bridge
exactly once is just finding a Eulerian circuit in this graph!

So: when do those exist?

4.5 Eulerian circuits

In 1735, Euler presented the following theorem, arguably the first
result ever proven in the field of graph theory, to the St. Peters-
burg Academy:

Theorem. A connected graph G has an Eulerian circuit if
and only if it has no vertices of odd degree.

Proof. As this is an if and only if proof, i.e. a proof of equivalence,
given any connected graph G we must prove two things:

(♥): If G has an Eulerian circuit, it has no odd-degree vertices.
(♣): If G has no vertices of odd degree, then it has an Eulerian

circuit.

We start by proving (♥). Suppose that G = (V,E) is a graph
with a Eulerian circuit. Write down that Eulerian circuit here:

{v0, v1}, {v1, v2}, {v2, v3}, . . . , {vn−1, vn}, {vn, v0}.

Pick any vertex x ∈ V . Notice that each time x comes up in the
above circuit, it does so twice: if x = vi for some i, it shows up
in both {vi−1, vi} and {vi, vi+1}. You can think of this as saying
that each time our circuit “enters” a vertex along some edge, it
must “leave” it along another edge!

As a result, any vertex x shows up an even number of times in
the circuit we’ve came up with here. But our circuit is Eulerian;
that is, it contains every edge in E exactly once. As a result,
every vertex x shows up in an even number of edges in E; that is,
deg(x) is even for every vertex x, as claimed.

We now prove (♣). Suppose that G is a connected graph in which
all of our vertices have even degree. Consider the following process
for generating a cycle in G:

Init: Pick a vertex v0 at random from V . Think of v0 as
our current location, and our current walk as the empty
walk.

1. If we are currently at some vertex vi, randomly choose
a vertex vi+1 so that the edge {vi, vi+1} is not yet in
our walk. Add {vi, vi+1} to our walk, and update our
current location to vi+1.

2. Repeatedly do step 1 above until we get back to v0.

Notice that because the degree of every vertex in G is even, step
1 in this process can never fail: if we are able to “enter” a ver-
tex along some edge, there must be a corresponding edge we can
“leave” on! Because G has a finite number of edges, we can’t get
stuck on 1 forever as well; so we must eventually get back to v0.
In other words, the process above generates a circuit! Call it C.

If this circuit is Eulerian, sweet; we’re done. If not, though, it’s
not too hard to make it Eulerian! Simply do the following:

Init: Take G, and delete C’s edges from G. Because every
vertex shows up an even number of times in a circuit
(as shown earlier!), this doesn’t change our “all vertices
have even degree” property.

1. If G has edges that aren’t in C, then (because G’s con-
nected) there must be some vertex vi in our circuit that
still has nonzero degree.

41



2. Starting from vi, run our “find a circuit” algorithm, to
get another circuit C ′ that starts and ends at vi.

3. Now, “paste” that circuit C ′ into our original circuit,
by traveling along C until we get to vi, then taking the
circuit C ′ which starts and ends back at vi, and then
resuming the original circuit C. We’ve made a bigger
circuit!

4. If G still has edges, go to 1 and do it all again!

This process will “grow” our circuit on each pass, and is again
guaranteed to work because our degrees stay even on each loop of
our algorithm. So doing this repeatedly will generate an Eulerian
circuit for us, and thus complete our proof!

4.6 Useful graph results: the degree-sum for-
mula, bounding edges

In the above section we studied graphs from a “historical” per-
spective; that is, we proved the first theorem properly studied in
graph theory, and built up a lot of machinery and useful concepts
along the way!

To give ourselves some more practice with proofs and graphs, we
prove a handful of smaller theorems in this subsection. These
results are short and sweet, but also quite handy when studying
graphs later on:

Lemma 3. (The “degree-sum formula,” or “handshaking theo-
rem.”) If G is a graph, then the sum of the degrees of the vertices
in G is always twice the number of edges in G.

Proof. We prove this by “counting” the number of times vertices
in our graph show up as endpoints of edges in our graph. We do
this in two ways:

• On one hand, every edge has two endpoints. Therefore, the
total number of times vertices are used as endpoints in our
graph is simply twice the number of edges.

• On the other hand, every endpoint is counted once when we
calculate the degree of the corresponding vertex. Therefore,
if we sum up the degrees of all of the vertices in our graph,
this counts the total number of times vertices are used as
endpoints in our graph.

Therefore we have that the sum of degrees of vertices in our graph
is twice the number of edges, as they’re both valid ways of counting
the same object!

Lemma 4. If G is a connected multigraph with loops (i.e. we
allow multiple edges, and also allow an edge to have both of its
endpoints be equal) on n vertices, then G contains at least n − 1
edges.

Proof. We proceed by induction on n. For n = 0, 1, this claim is
trivially true, as we always have that E is a nonnegative number.

This establishes our base cases, so we now turn to the inductive
step: here, we assume that our claim holds for all connected graphs
on at most n vertices, and seek to use that assumption to prove
that our claim holds for connected graphs on n+ 1 vertices.

To do this, consider the following operation, called edge con-
traction. We define this as follows: take any graph G and any
edge e in G with two distinct endpoints. We define Ge, the graph
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that this edge, as follows: take G, delete e, and then combine e’s
two endpoints together into a single vertex, preserving

3

1

2

45

6

1

2
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6

1

2

5

6

1

26 26 2

all of the
other edges that the graph has along the way.

We draw examples of this process at right: here, we have started
with a graph on six vertices, and then contracted one by one the
edges highlighted in red at each step.

Notice that contracting an edge decreases the number of vertices
by 1 at each step, as it “squishes together” two adjacent vertices
into one vertex. It also decreases the number of edges by 1 at each
step, as we are contracting an edge to a point!

Finally, notice that contracting an edge preserves the property
that our graph is connected. To see why, take any walk

{v0, v1}, {v1, v2}, . . . {vi−1, vi}, {vi, vi+1}, {vi+1, vi+2}, . . . {vn−1, vn}

in our graph. Notice that if we contracted an edge {vi, vi+1} in
this walk, this would collapse the vertices vi, vi+1 into some new
vertex vi⊕i+1 and preserve all of the edges other than {vi, vi+1}.
As a result, our walk would just become

{v0, v1}, {v1, v2}, . . . {vi−1, vi⊕i+1}, {vi⊕i+1, vi+2}, . . . {vn−1, vn},

and thus still connects the vertices v0, vn. Therefore, edge con-
traction cannot “break” any pre-existing walks, and so preserves
the property that our graph is connected.

We can use this process to prove our claim via induction:

• Take any connected multigraph graph G on n+ 1 vertices.

• Take any edge e in G with two distinct endpoints (such an
edge exists, because G contains at least two different vertices
and G is connected) and contract that edge. This gives us a
new graph Ge, which is connected and contains n vertices.

• Therefore, by induction, we know that in Ge, the number of
edges is at least n− 1.

• We also know that G has exactly one more edge than Ge.

• Therefore, in G, we know that we have at least n− 1 + 1 =
(n + 1) − 1 edges. In other words, we’ve proven that our
claim holds for graphs on n+ 1 vertices, as desired!

Notice that this result applies to simple graphs as well, as any
simple graph is certainly a multigraph!

4.7 How Induction Can Go Wrong: Two Ex-
amples

In the above proof, we used induction to successfully prove a claim
about graphs! Induction is often a great proof method to study
graphs; however, it is also a tricky one that can sometimes go
awry. In this section, we study two “failed” induction proofs, to
illustrate some common pitfalls with this method:

Claim. All shoes in the world are the same size.

“Flawed” inductive proof: We proceed by induction. In specific,
we seek to prove the stronger claim “Any set of n shoes in the
world are all the same size;” if we make this set be the collection
of all shoes in the world, then it will prove our claim.

Our base case is straightforward. For n = 1, our claim is that in
any set of shoes containing one shoe, then all of the shoes are the
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same size. This is trivially true: because there’s only one thing in
our set, it is automatically the “same” size as itself!

With the base case established, we move on to the inductive step.
Here, we assume that in any set of up to n shoes, they are all the
same size, and seek to use this assumption to prove that all of the
shoes in any set of n+ 1 shoes are the same size.

1 2 3 n-1 n n+11 2 3 nn-1 n+1
...

1 2 3 n-1 n1 2 3 nn-1
...

2 3 n-1 n n+12 3 nn-1 n+1
...

2 3 n-1 n2 3 nn-1
...

To do this, proceed as follows: take any set of n+1 shoes. Number
these shoes 1, 2, . . . n, n + 1, and split this set into two subsets
{1, 2, . . . n − 1, n} and {2, 3 . . . n, n + 1}, each containing just n
shoes.

By our inductive hypothesis we know that all of the shoes in
{1, 2, . . . n − 1, n} are the same size: let’s call that size s. In-
duction also tells us that all of the shoes in {2, 3 . . . n, n + 1} are
the same size; call that size s′.

We also know that these two sets overlap; specifically, they over-
lap on the shoes {2, 3, . . . n−2, n−1}. Therefore the shoes in this
overlap simultaneously have sizes s and s′. This forces s = s′,
and therefore tells us that all of the shoes in our original set
{1, 2, . . . n, n+1} are the same size (namely, whatever size is equal
to s = s′!)

2

Before reading the next bit, look at this proof and try to come up
with a flaw25 in the logic!

Once you’ve tried this, read on. . .

Why this proof fails: Our inductive step only lets us go from n to
n+1 if n ≥ 2! If we try to run our claim for n = 1, n+1 = 2, then
the two sets {1, 2, . . . n − 1, n} and {2, 3 . . . n, n + 1} are just {1}
and {2}. This means that their “overlap set” {2, 3, . . . n−2, n−1}
is actually the empty set {} = ∅, and so we cannot conclude that
s = s′ as there is nothing in the overlap! Therefore, this inductive
proof is not valid.

How to avoid this error : When doing a proof by induction, if you
can, do a few base cases until you see a “pattern!” If you do this,
then this will help you in two ways:

• First, that “pattern” is likely going to be what you prove
holds in your inductive step. Proving that this works will
involve just making that “pattern” formal; so seeing the
pattern first will usually help you later on!

• Second, if you’ve seen the “pattern” in your base cases, then
you probably won’t ever be in the situation above. That is,
if in your base case work you used the pattern to get to some
more base cases, this means that you’ve kind-of checked that
the inductive step does pick up from where your base case
leaves off (assuming that your inductive step is that pattern
made formal.)

• Finally, I should say that you don’t have to do this: if you’ve
written an inductive step that is a valid proof, then you’re
good! But doing a few more base cases never hurts.

I mention this in the graph theory chapter because it’s related to
a common mistake people make when writing induction proofs on
graphs! To illustrate this, we consider a second “false” proof by
induction:

Claim. If G is a simple graph in which the degree of every vertex
is at least 1, then G is connected.

25Note: a flaw in the logic isn’t something like “the conclusion is false:”
that’s more of an argument against induction itself, which is something that
we do believe! Instead, try to spot the place in the proof above where we
have failed to apply induction properly!
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“Flawed” inductive proof : We induct on the number of vertices
in our graphs: that is, we will prove the claim “For any graph G
on n vertices, if the degree of every vertex in G is at least 1, then
G is connected.”

To avoid the issue we saw in our last inductive proof, we prove a
handful of base cases:

• For n = 1, we would have one vertex. There is no simple
graph on one vertex in which every vertex has degree at least
1 (we only have one vertex, and so can have no edges unless
we have a loop, which is not allowed in a simple graph) so
there are no graphs our claim applies to.

Therefore, the “if. . . then. . . ” claim here is vacuously true;
there’s nothing that makes the “if” part true, and so the
entire thing cannot be falsified and thus is true.

• If that feels flimsy, n = 2 is pretty straightforward: the only
graph on 2 vertices in which all vertices have degree 1 is
K2 = , which is clearly connected.

• Just to be extra-safe, we look at n = 3 as well. In this case,

there are only two graphs: either K3 = or P3 = ,
both of which are also connected.

With this in place, we move to our induction step. That is: we
assume that our claim holds for all graphs on at least n vertices,
and seek to use this assumption to study graphs on n+1 vertices.

To do this: take any graph G on n vertices, in which the degree of
every vertex is at least 1. Add to this graph a new vertex v, and
draw any number of edges from v to other vertices in G, making
sure to draw at least one such edge. Call this new graph G′.

I claim that G′ is connected. To see why, take any two vertices in
G′. We have two possible cases:

• If both of the vertices x, y we’ve chosen are in the origi-
nal graph G, then because G is connected by our inductive
assumption, there is a path from x to y in G. Adding the
new vertex v and some more edges certainly would not break
such a path; therefore this path still exists in G′, and so x
and y are connected.

• Otherwise, we picked one vertex x from the original graph
G, while the other was v, our new vertex.

Because the degree of v was at least 1, there is some other
vertex y in the original graph G that we’ve connected to v.
Again, because G is connected by our inductive hypothesis,
there is a path from x to y; if we attach the {y, v} edge to
the end of this path, we have a path from x to v, and thus
have shown that x and v are connected.

Therefore we’ve shown that any two vertices in G′, this new graph,
are connected. Because we can create any graph on n+ 1 vertices
by taking a graph on n vertices and just adding a new vertex,
we’ve therefore proven this claim for all graphs on n+ 1 vertices,
as desired. 2

As before, look at this proof and try to come up with a flaw before
reading further!

Once you’ve tried this, continue on. . .

Why this proof fails: This proof fails in its last paragraph, where
we say that we can get “any” graph on n+ 1 vertices by taking a
graph on n vertices and adding a vertex.While this is true on its
face, in this proof we are making claims about graphs in which
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the degree of every vertex is at least 1. In this case, it is false
that you can create any such graph on n+ 1 vertices by taking a
graph on n vertices and adding a new vertex + at least one edge!

For example, consider the graph K2

∐
K2 = . You cannot

create this graph by taking any of the graphs or P3 =
on three vertices in which all vertices have degree at least 1 and
adding a new vertex + edge. Therefore, our inductive argument
is flawed: we have failed to write an argument that considers all
possible graphs on n+ 1 vertices.

How to avoid this error : When doing inductive proofs, it’s dan-
gerous to start with the n case and “grow” it to the n + 1 case:
this makes it easy to make logical mistakes like this, where you
assume that you’ve considered all of the possible n + 1 cases. In
particular, this can easily happen with graphs, as it can be hard
to make an inductive way to “grow” a graph on n vertices to a
graph on n+ 1 vertices that captures all possible graphs on n+ 1
vertices.

Instead, I recommend taking a graph on n+1 vertices and finding
a way to “shrink” it to a graph on n vertices, and then using the
inductive hypothesis/etc to make an argument about the original
n+ 1 vertex graph (like we did with edge contraction!)

4.8 Planar graphs

By drawing lines from the “north pole” (0,0,1)

through points either in the xy-plane or on the

surface of the sphere, we can translate graphs

drawn on the sphere (in red) to graphs drawn in

the plane (in yellow.)

To close our graph theory section, we turn to a particularly beau-
tiful concept: planarity!

Definition. We say a graph G is planar if we can draw it in the
plane so that none of its edges intersect.

Sometimes, it will help to think of planarity in the following way:

Definition. We say that a connected graph G is planar if we
can draw it on a sphere in the following fashion:

• Each vertex of G is represented by a point on the sphere.

• Each edge in G is represented by a continuous path drawn
on the sphere connecting the points corresponding to its
vertices.

• These paths do not intersect each other, except for the trivial
situation where two paths share a common endpoint.

f1
f2 f4

f3

It is not hard to see that this definition is equivalent to our earlier
definition of planarity! Simply use the “stereographic projection
map” (drawn at right) to translate any graph on the plane to a
graph on the sphere, and vice-versa.

Definition. For any connected planar graph G, we can define a
face of G to be a connected region of R whose boundary is given
by the edges of G.

f1 f2 f3

f4

f2

f1 f3

f4

For example, the graph at right has four faces.

Notice that we always have the “outside” face in these drawings,
which can be easy to forget about when drawing our graphs on the
plane. This is one reason why I like to think about these graphs
as drawn on the sphere; in this setting, there is no “outside” face,
as all of the faces are equally natural to work with.

This observation has a nice accompanying lemma:

Lemma. Take any connected planar graph G, and any face F of
G. Then G can be drawn on the plane in such a way that F is
the outside face of G.
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Proof. Take a planar embedding of G on the unit sphere. Rotate
this “drawn-upon” sphere so that the face F contains the north
pole (0, 0, 1) of the sphere. Now, perform stereographic projection
to create a planar embedding of G in R2. By construction, the
face F is now the outside face, which proves our claim.

It bears noting that not all graphs are planar:

Proposition. The graph K3,3 is not planar.

a b c

d e f

b

d f

a c

e

Proof. We proceed by contradiction: let’s assume that there is
some way to draw K3,3 on the plane without any edges crossing.

To get to a contradiction, first notice thatK3,3 contains a “hexagon,”
i.e. a C6, as drawn at right. Therefore, in any drawing of K3,3,
we will have to draw this cycle C6.

Because this cycle is a closed loop, it separates space into an
“inside” and an “outside.” Therefore, if we are creating a planar
drawing after drawing this C6, any remaining edge will have to
either be drawn entirely “inside” the C6 or “outside” the C6;

b

d f

a c

e

b

d f

a c

e

or

that
is, we can’t have an edge cross from inside to outside or vice-versa,
because that would involve us crossing over pre-existing edges.

Therefore, if we have a planar drawing of K3,3, after we draw the
C6 part of this graph, when we go to draw the {d, c} edge we have
two options: either draw this edge entirely on the inside of our
C6, or entirely on the outside.

If we draw this edge on the inside, then on the inside the vertices
f and a are separated by this edge; therefore, to draw the edge
{a, f} we must go around the outside. Similarly, if we draw this
edge on the outside, then a, f are separated from each other on
any outside path,

b

d f

a c

e

b

d f

a c

e

or

and the edge {a, f} must be drawn inside of the
hexagon.

In either of these cases, notice that there is no path that can be
drawn from b to e on either the inside or the outside! Therefore
we cannot draw our last edge {b, e} without breaking our planar
condition, and thus have a contradiction to our claim that such a
planar drawing of K3,3 was possible.

If you are skeptical of the above proof, get a ping-pong ball or
a grapefruit or something, and draw on it as described by the
proof! In general, it’s a lot easier to understand most graph theory
arguments if you’re drawing examples alongside the proofs at the
same time.

4.9 The Euler Characteristic

Planar graphs have many particularly beautiful properties! One
of them is something called the Euler characteristic:

3

1

2

45

6
f1

f2
f3

f6

f4

f5

A planar multigraph with loops.

Theorem. (Euler characteristic.) Take any connected graph
that has been drawn in R2 as a planar graph. Then, if V is
the number of vertices, E is the number of edges, and F is the
number of faces in this graph, we have the following relation:

V − E + F = 2.

Proof. We will actually prove a stronger claim: we will show that
any planar multigraph (a graph, but where we allow multiple
edges between vertices, and also edges that start and end at the
same vertex) satisfies the V − E + F = 2 formula. For the rest
of this proof, we will assume that graph and multigraph are syn-
onymous; once we are done with this proof, though, we will stop
assuming this.
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We proceed by induction on the number of vertices. Suppose that
V = 1. Then our graph looks like something of the following form:

...

...

...

I claim that V − E + F = 2 for any of these graphs, and prove
it by a second induction on the number of edges. For a zero-edge
graph, this is easy; we have one vertex, no edges and one face, we
have V − E + F = 1 − 0 + 1 = 2. Now, assume via induction
that every one-vertex multigraph on n edges has V −E + F = 2.
Take any graph on one vertex with n+ 1 edges. Pick one of these
edges, and look at it.

I claim that this edge borders exactly two faces. To see why, take
any edge, and assign an orientation to it (i.e. if our edge is {x, y},
then orient the edge so that we travel from x to y.) If you do this,
then our edge has two “sides,” the left- and right-hand sides, if
we travel along it via this orientation.

x

y

(left) (right)
x

y

(left) (right)

There are two possibilities, as drawn above: either the left- and
right-hand sides are different, or they are the same. This tells
us that our edge either borders one or two faces! To see that we
have exactly two, we now recall that our edge (because our graph
has exactly one vertex) must start and end at the same vertex.
In other words, it is a closed loop: i.e. its outside is different
from its inside! In other words, our left- and right-hand sides are
different, and our edge separates two distinct faces.

Therefore, deleting this edge does the following things to the
graph: it decreases our edge count by 1, and also decreases our
face count by 1 (as we merge two faces when we delete this edge.)
In other words, deleting this edge does not change V − E + F !
But by induction we know that V − E + F = 2 for all 1-vertex
graphs on n edges, which is what we get if we delete this edge
from a n+ 1-edge graph. So we’re done!

This settles our base case for our larger induction on V , the num-
ber of vertices. We now go to the second phase of an inductive
proof: we show how to reduce larger cases to smaller cases!

To do this, we use edge contraction, a tool that was already
shown to be quite handy for inductive arguments on graphs. As
noticed before, contracting an edge decreases the number of ver-
tices by 1 at each step, and also decreases the number of edges
by 1 at each step. Finally, it never changes the number of faces;
if two faces were distinct before this process happens, they stay
distinct, as we’re not making any cuts in any of our boundaries
(and instead are just shrinking them a bit!)

But this means that V − E + F is still constant! Therefore, by
induction, if V − E + F holds for every n-vertex multigraph, it
holds for any n+1-vertex multigraph by just contracting an edge.
This finishes our induction, and thus our proof.

There’s a fairly beautiful consequence of this theorem, which is a
nice note to end the first half of the course on: the classification
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of all Platonic solids!

The five regular polyhedra.

Definition. A regular polygon is one in which all of the side
lengths are equal and all of the interior angles are equal. Equilat-
eral triangles and squares are examples of regular polygons.

A Platonic solid is a 3-D shape whose faces are all copies of the
same regular polygon, such that the same number of edges meet
at each vertex.

Tetrahedra, cubes, octahedra, dodecahedra and icosahedra are all
examples of Platonic solids that you’ve seen before. In particular,
you’ve likely encountered several of these shapes as dice, as these
are convenient shapes with (4/6/8/12/20) sides that if you were
to “roll,” you’d expect every side to have the same likelihood of
being on top.

Perhaps surprisingly, these are the only Platonic solids: that is,
there isn’t some 3D-shape made out of heptagons, or out of 54
equilateral triangles, or anything else you might think of! If you’re
sticking together regular polygons, using the same number of poly-
gons at each vertex, and not mixing-and-matching your polygons,
this is it: these are the only five.

. . . why? Well: let’s prove this!

Claim: There are only five Platonic solids: the tetrahedron,
the cube, the octahedron, the dodecahedron, and the icosa-
hedron.

Proof. Take any Platonic solid. As defined, we know that all of the
faces of our Platonic solid are copies of the same regular polygon:
let n denote the number of sides of that polygon. (For example,
if our Platonic solid’s faces were all triangles, n would be 3.) As
well, we know that the same number of polygons meet at every
vertex of our polyhedron: call that value k.

Finally, let V denote the number of vertices in our Platonic solid,
E the number of edges, and F the number of faces.

What do we know about these values? Well:

• Take all of the faces of our Platonic solid, and on each face
add up the number of edges that face contains. On one
hand, we should get nF , because each face is a n-gon and
contains n edges.

On the other, though, we should get 2E! This is because
every edge is counted in two faces; the face to the left of
that edge, and the face to the right.

As a result, because these were just two ways of counting
the same object, we know that these things must be equal:
that is, that nF = 2E. Dividing by n gives us F = 2

nE.

• Similarly, take all of the vertices of our Platonic solid, and
for each vertex add up the number of edges leaving that
vertex. On one hand, we know that this is kV , because each
vertex has k edges leaving it.

On the other hand, though, this is 2E again! This is because
(as we saw earlier) the sum of the degrees of vertices in any
graph is always twice the number of edges.

As before, this tells us that these two quantities are equal;
that is, that kV = 2E. Dividing by k gives us V = 2

kE.

• Finally, we know that our Platonic solid, thought of as a
graph, is planar! That is, if you were to draw your Platonic
solid on a sphere (by “blowing it up” a bit so that it is a
sphere, basically), none of its edges would cross.

This means that V − E + F = 2.
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If we combine all of these observations together, we get

V − E + F = 2

⇒ 2

n
E − E +

2

k
E = 2

⇒
(

2

n
+

2

k
− 1

)
=

2

E

Because 2
E is positive, this tells us that 2

n + 2
k − 1 is positive as

well; that is, that 2
n + 2

k > 1!

However, there just aren’t that many values of n, k that make
this possible. Notice that if we have a 3D shape, we have to
have at least three edges leaving each vertex (two would make us
flat), and if our faces are polygons they need to each have at least
three edges in them (as a 2-gon isn’t a polygon!) In other words,
n, k ≥ 3.

But if n = 3, the only values of k that make 2
n + 2

k > 1 are when
k = 3, 4, 5; if k ≥ 6, this inequality does not hold. If n = 4, the
only value of k that works is when k = 3; if k ≥ 4 our inequality
fails again. Finally, if n = 5 the only value of k that works is
k = 3, and if n ≥ 6 there are no values of k ≥ 3 that work.

In other words, the only (n, k) pairs that work are (3,3), (3,4),
(3,5), (4,3), (5,3); that is, the tetrahedron, octahedron, icosahe-
dron, cube, and dodecahedron!
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Compsci 225 Lecturer: Padraic Bartlett

Chapter 5: Trees
Week 7 UoA 2018

A particularly useful kind of graph to study (especially in com-
puter science) are trees! Trees are a remarkably applicable fam-
ily of graphs, with uses ranging from chemistry to file systems to
transit maps. In this section, we define the concepts we need to
study trees, study notable applications of trees, and then prove a
handful of fundamental results about trees.

5.1 Trees: Definitions and Examples

To define what a tree is, we introduce a useful concept from graph
theory that we didn’t have time to discuss last chapter:

Definition. A graph G has another graph H as a subgraph if
H is “contained within” G. In other words, if you can take G and
remove vertices and/or edges from it until you get the graph H,
then H is a subgraph of G.

For example, the graph at right has C5 as a subgraph, because we
can delete the “inside” vertices and edges to have just a C5 left
over.

Note that any graph G is “trivially” a subgraph of itself, as we
can just delete “nothing” from G and have G left over.

With this stated, we can define a tree as follows:

Definition. A tree is a graph T that is connected and has no
cycle graph Cn as a subgraph.

For example, the three graphs at right are not trees, as each of
them has a cycle graph of some length as a subgraph.

However, the three graphs below are all trees:

Happy little trees.

We call vertices of degree 1 in a tree the leaves of the tree. For
example, the leaves of the trees above are colored green.

x0
y0x1

y1

y2

x2
x3

x0
y0

x0
y0x1

y1

x0
y0x1

y1

y2

x2

5.2 Trees: Some Fundamental Theorems

To help us understand how to work with trees, let’s prove a hand-
ful of fundamental theorems about trees as graphs:

Theorem. If T is a tree containing at least one edge, then
T has at least two leaves.

Proof. Consider the following process for generating a path in T :

Init: Choose any edge e = {x0, y0} in G.
1. Starting from i = 0, repeatedly do the following: if xi has

degree ≥ 2, then pick a new edge {xi, xi+1} leaving xi. Be-
cause T is a tree, xi+1 is not equal to any of our previously-
chosen vertices (if it was, we’d have a cycle.) Stop when xi
eventually has degree 1.

2. Starting from i = 0, do the same thing for yi.

This process must eventually stop: on a tree with n vertices, we
can only put n vertices in our path because the “no cycle” property
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stops us from repeating vertices. When it stops, the endpoints of
the path generated are both leaves because this is the only way
we stop this process. Therefore, this process eventually finds two
leaves in any tree!

We use this result to prove a very useful property about trees:

Theorem. If T is a tree on n vertices, then T contains ex-
actly n− 1 edges.

Proof. We proceed by induction. Our base case is straightforward:
any tree on 1 vertex clearly has no edges (as it’s a simple graph.)
If you want, you can also consider 2-vertex graphs as well; the
only connected two-vertex graph is , which has one edge as
desired.

For the inductive step, let’s assume that our property holds for
all trees on up to n vertices. Let T be any tree on n+ 1 vertices;
we want to use our assumption to prove that T contains exactly
(n+ 1)− 1 = n edges.

To do this, let l be a leaf vertex in T (we know that l exists by
our earlier theorem.) Delete l and the edge connecting l to the
rest of T from T ; call the resulting graph T − l.
T − l contains n vertices, because we started with n + 1 vertices
and deleted one vertex. It is also still connected (because l was
degree 1, the only walk that would need to use the edge to l is a
walk going directly to l, and we deleted l.) Finally T − l contains
no cycle subgraphs, because T contained no cycle subgraphs and
deleting things from T cannot have somehow caused a cycle to
exist.

Therefore T − l is a tree! By induction, T − l contains n−1 edges.

Therefore T itself contains (n − 1) + 1 = n edges, because T is
just T − l plus the vertex l and the single edge connecting l to the
rest of T . In other words, we’ve proven our inductive claim!

The above property (that any tree on n vertices contains exactly
n−1 edges) actually turns out to completely characterize trees:
that is, if you take any connected graph on n vertices, if it has
n− 1 edges, then it is forced to be a tree! We prove this here:

Theorem. If G is a connected graph on n vertices containing
exactly n− 1 edges, then G is a tree.

Proof. We proceed by contradiction; suppose that G is a con-
nected graph on n vertices containing n−1 edges that is somehow
not a tree.

Because G is connected, the only way that G can fail to be a tree
is if it contains a cycle subgraph. Let {v1, v2}, {v2, v3}, . . . {vk, v1}
be such a cycle subgraph.

Take G and delete the edge {v1, v2} from G. I claim that G is still
connected.

To see why, take any walk in G that uses the edge {v1, v2}, and re-
place each use of {v1, v2} with the sequence of edges {v1, vk}, {vk, vk−1}, . . . {v3, v2}.
In other words, every time you’d go directly from v1 to v2 along
that edge, instead use the cycle to go the “other” way around!

As a result, if two vertices x, y used to be connected by a walk in
G, they are still connected after deleting {v1, v2}; in other words,
G− {v1, v2} is still connected.

But G− {v1, v2} is a graph on n vertices containing n− 2 edges,
as we had n − 1 edges and deleted one. But in chapter 4, we
proved that a connected graph on n vertices must contain at least
n − 1 edges! In other words, we have a contradiction, and so
our claim that G was a tree must have been correct.
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5.3 Spanning Trees

In this section, we study a particularly useful application of the
concept of trees: namely, spanning trees.

Definition. A spanning tree T of a graph G is a subgraph of
G that contains every vertex in G and is a tree.

We draw several examples of spanning trees at right.

Spanning trees are remarkably useful objects in computer science
and mathematics! One of the particularly useful properties of
spanning trees is the following:

Theorem. If T is a tree, then there is exactly one path26

between any two vertices in T . In particular, if T is a spanning
tree of a graph G, then there is exactly one path in T between
any two vertices of G.

Proof.

vi vi+1

vk+1vk
vi vi+1

vk+1vk

vi vi+1

vk+1 vk
vi vi+1

vk+1 vk

Because T is a tree, T is connected; as a result we know
that for any two vertices x, y there is at least one walk that goes
from x to y.

To turn any such walk into a path, do the following:

• Take any walk {v0, v1}, {v1, v2}, . . . {vn−1, vn}.
• If this walk repeats an edge e, let {vi, vi+1} be the first time
e is used, and {vk, vk+1} be the last time e is used.

• There are two possibilities: either vi = vk, vi+1 = vk+1 (in
which case we walked on e in the same direction both times)
or vi = vk+1, vi+1 = vk (in which case the second time we
walked on e, we did so “backwards.”)

• In the first possibility, simply cut out everything in between
the first and last use of this edge, as well as the last use of this
edge. This leaves the walk {v0, v1}, . . . {vi−1, vi}, {vi, vi+1}, {vk+1, vk+2}, {vk+2vk+3}, . . . {vn−1, vn}.
This is still a walk because vi+1 = vk+1.

• In the second possibility, cut out everything between the first
and last use of this edge, as well as both times the edge is
used. This leaves the walk {v0, v1}, . . . {vi−1, vi}, {vk+1, vk+2}, {vk+2vk+3}, . . . {vn−1, vn}.
This is still a walk because vi = vk+1.

• Repeat this process until it cannot be repeated any more.
The result remains a walk, as shown: it also still has the
same start and end points, as this process does not change
those!

This completes half of our proof: we’ve shown that there is at
least one path between any two vertices. To see why two distinct
paths is impossible, we proceed by contradiction.

Suppose that there are vertices x, y linked by two different paths
P1 = {v1 = x, v2}, {v2, v3}, . . . {vn−1, y} and P2 = {w1 = x,w2}, {w2, w3}, . . . {wm−1, y}.

v1

w1 v2

w2

v3

w3
vi-1

wi-1

vi

wi

vi+1 vk-1

wi+1 wl-1

vk

wl

Because these two paths are different, there must be some value i
such that vi 6= wi. Let i be the smallest such value, so that these
paths agree at vi = wi and diverge immediately afterwards.

These two paths must eventually meet back up, as they end at the
same vertex y. Let k, l be the two smallest values greater than i
such that vk = wl. Notice that this means that all of the vertices
vi−1, vi, vi+1, . . . vk−1, vk, wl−1, wl−2 . . . , wi are distinct (as other-
wise we could have picked even smaller values at which these paths
met back up.)

Now, look at the walk formed by starting P1 at vi−1, proceeding
until vk, and then taking P2 backwards from wl until wi−1. This
walk repeats no vertices other than the starting and ending one,
by construction. Therefore it is a cycle!

But we are in a tree, and trees do not contain cycles. Therefore
this is a contradiction to our assumption that we had two distinct
paths.
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The reason we care about this property is because graphs are often
used to model connected networks. To give a few examples:

• On a hardware level, you can model the Internet (and indeed
the local network at any business / University / etc) as a
graph. In this setting, you have lots of different routers /
computers / etc all linked to each other; you can think of
the devices as our vertices, and the connections (either via
WiFi or via physical cables) as our edges.

• You can also model a city as a graph: make each neigh-
borhood or point of interest (e.g. UoA, or Britomart, or
the Domain) a vertex, and connect two points by an edge
if they’re linked by a direct road. (The same idea applies
to cities and direct airport flights, or classrooms on campus
and footpaths.)

In both of these situations, you often do not want to deal with
the entire graph all at once!

• In the “internet” graph, you’ll often have routers and devices
that want to broadcast a message to everyone else. To do
this, they’ll send out a message to devices they’re connected
to, and ask them to “rebroadcast” this to their neighbors.

However, if you have a cycle in your network graph (i.e.
device A is connected to device B, who is connected to device
C, who’s connected back to A) this process may send you
into an infinite loop, in which all of the looped devices just
keep rebroadcasting your message around and around in a
loop. That’s bad!

To fix this, routers and other internet devices often con-
struct the graph of everything they’re connected to, and
trim it down to a spanning tree. They then use this tree
to communicate, as doing so means that we do not have any
cycles and thus avoid the infinite loop problem from earlier!

• If you’re designing a train line for a large city, you’ll likely
want to connect as many major areas as possible with a
minimum of railroad track (to keep costs down.) To do this,
you’ll often want to take your city graph and construct a
spanning tree, and then build rail on the spanning tree!
Because a tree has the smallest number of edges amongst
any connected graph, this should keep costs down while still
connecting all of your major areas (because the tree is span-
ning.)

Luckily for us, spanning trees are easy to find:

Theorem. If G is a connected graph, then G has a spanning
tree.

Proof. We give a process for finding a spanning tree of any con-
nected graph G here:

• If G is not a tree, then as shown before G must contain a
cycle subgraph. Pick any such cycle subgraph and delete an
edge from that cycle; as shown before, this does not change
the fact that G is connected.

• Repeatedly do this until G no longer contains any cycle sub-
graphs.

The resulting graph is a tree, as it’s still connected and contains
no cycles. In particular, because we never deleted any vertices
from G, this is a spanning tree, as desired.

54

https://en.wikipedia.org/wiki/Switching_loop


 

Tasman

Buller

West Coast

Canterbury

Mid-Canterbury

South Canterbury

North OtagoSouthland

Otago

3 4
4

8 4
2

1

2

43

2 7 5

6

3

Tasman

Buller

West Coast Canterbury

Mid-Canterbury
South Canterbury

North Otago

Otago
Southland

 3 4
4

8 4
2

1

2

43

2 7 5

6

3

 3 4
4

8 4
2

1

2

43

2 7 5

6

3

This is great for the internet problem we mentioned earlier! How-
ever, it can leave something to be desired in other applications.
Consider the transit problem, where we wanted to construct a rail
network for a large city.

While it is true that a spanning tree will mean we’re minimizing
the number of connections that we’re drawing, some connections
(e.g. train lines that require us to make a tunnel, or a bridge)
are much more expensive than others. As such, we’ll often not
just want to make a spanning tree, but a spanning tree with the
“smallest possible cost” amongst all possible spanning trees!

To make this rigorous, we have a pair of definitions:

Definition. Given a graphG, we can turnG into a edge-weighted
graph by labeling each of its edges with real numbers.

For example, we could take a map of the South Island (subdivided
into regions corresponding to rugby teams) and turn this into a
graph: our regions are the vertices, and we connect two regions
when they’re adjacent.

We can label each of these connections with estimated travel
times, that give us an idea of how long it would take to travel
from one region to the next. Doing this gives us a edge-weighted
graph!

Given an edge-weighted graph G and a spanning tree T of G, we
say that the weight of T is the sum of the weights of all of the
edges in T . We say that T is a minimum spanning tree for G if
the weight of T is the smallest possible amongst all spanning trees
of G; that is, if weight(T ) ≤ weight(T ′), for any other spanning
tree T ′.

Notice that a graph G may have more than one minimum spanning
tree; ties for the smallest possible weight are entirely possible.

Finding minimum spanning trees is (for the reasons stated above)
an incredibly practical task in computer science! There are sev-
eral algorithms that construct minimum spanning trees, each with
their own pros and cons; in other CompSci papers you will study
several of these and their associated run-time/pros/cons.

For now, I want to pick just one famous one (specifically, Prim’s
algorithm) and prove that it finds a minimum spanning tree. We
do this to both practice our proof techniques, and to illustrate
how we can use our algorithm techniques to study and prove the
correctness of famous results in computer science!
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Theorem. (Prim:) Take any connected graph G with edge
weights. Consider the following process:

Init: Let e be an edge with the smallest possible weight in
G. (If there is a tie, pick one such edge at random.)
Initialize T to be the edge e and its two endpoints.

1. If T is a spanning tree, stop. Otherwise, look at the
collection of all edges with exactly one endpoint in T .
Pick the one with the smallest possible weight and add
it to T .

This generates a minimal spanning tree.

Proof. To see why this process generates a spanning tree, notice
the following:

• In the process above, note that if T is not a spanning tree
there will always be edges to choose from. This is because
if T is not spanning, then by definition there are vertices
in G that are not in T . Because G is connected, there are
walks from these vertices to the vertices in T , and thus in
particular there are edges with exactly one vertex in T and
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one not in T . (Specifically, we have at the least the first
edge on our walk where we go from a non-T vertex to a T
vertex!)

• T is also connected, because we only add edges connected
to T at each step.

• As well, each step of this process increases the number of
edges and vertices in T by 1 (because exactly one endpoint
of e was in T .) Because T starts with 2 vertices and 1 edge,
this means that at each step T will always have one more
vertex than it has edges.

• Therefore, our results from before tell us that T must be a
tree; this is because T is connected and has one less edge
than it has vertices!

To see that Prim generates a minimal spanning tree takes a bit
more work:

• Take a minimal spanning tree S of G.

• At the same time, run Prim’s algorithm on G to try to make
a spanning tree T , edge-by-edge. Stop this algorithm if it
ever picks an edge that’s not in S.

• If we never stop, then at the end S = T and we’re done, as
S was minimal!

• Otherwise, at some point in time Prim picked an edge e1 =
{x, y} to add to T that is not in S. Let x be the vertex that
was already in T and y be the new vertex to T .

• Because S is spanning and a tree, there’s a unique path in S
from x to y; because e1 /∈ S, this path plus e1 forms a cycle.
Call it C.

• On this cycle, start from y and travel away from x around
the cycle until you first return to T on some other edge e2.
(You’ll eventually do this, because you started at a vertex y
not in T and will eventually get to a vertex x that’s in T .)

• This edge e2 was a choice we had for T, but didn’t make.
As a result its weight is no less than the weight of e1.

• As well, if we add e1 to S and delete e2 the resulting graph
is still a tree. This is because it’s still connected (any path
that used e2 can just go the other way around the cycle C)
and we didn’t change the number of vertices or edges.

• Therefore, because S was minimal and we traded e2 for an
edge of no greater weight, S is still minimal after this change.
Also, S now agrees with our choice of e1!

• Do this every time S and T disagree, until they no longer
disagree. At this point in time S and T will now be equal,
which proves that T was indeed a minimal spanning tree!
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Compsci 225 Lecturer: Padraic Bartlett

Chapter 6: Sets, Relations and Functions
Weeks 7-9 UoA 2018

In the preceeding pages of this coursebook, we’ve used sets to
describe and work with many mathematically useful objects! Mo-
tivated by this, we’re starting this chapter off by studying sets for-
mally : here, we will define many of the set-theoretic ideas we’ve
been using throughout this course, prove a few set properties to
illustrate how these sorts of arguments work, and proceed from
there to introduce some new ways of combining and creating sets
that will come in handy later.

From there, we’ll use these ideas to study the mathematical con-
cepts of equivalence relations, posets, and functions, a trio
of concepts that are ubiquitous in computer science and mathe-
matics! We’ll study several examples of each of these here, and
write some straightforward proofs involving each concept to help
us get a grasp on them.

6.1 Sets

Our first definition is pretty straightforward:

Definition. A set is just a collection27 of things. We typically
define a set by listing or describing the objects it contains, sep-
arating objects by commas and surrounding the entire collection
with a pair of curly braces { and }. We call the things inside a
set the elements of the set, and use the symbol ∈ to say that an
element is in a set.

For example, {1, 2, 3} is a set containing the three elements 1, 2
and 3. Similarly, {Bulbasaur, Charmander, Squirtle} is a set, con-
taining the three starter Pokémon from the original games! Sets
can contain all sorts of things, and are not restricted to just “num-
bers” or “mathematical objects.” For these sets, we would say
that 2 ∈ {1, 2, 3}, but π /∈ {Bulbasaur, Charmander, Squirtle}.
In a set, we do not care about the ordering of the elements in a
set: that is, we think that {1, 2, 3}, {2, 3, 1} and {3, 2, 1} are all the
same set! We also do not list elements multiple times, and ignore
repeated elements if this were to happen: that is, we would regard
the sets {1, 1, 2, 3, 3, 3, 2, 1} and {3, 3, 2, 1} as both describing the
“same” set {1, 2, 3}, though we would never write out {1, 2, 3} in
such a form because it’s weird/misleading.

We say that two sets A,B are equal precisely when they contain
the exact same elements, and say that they are not equal if either
of A,B contains an element not present in the other.

To describe a set with infinitely many elements (in which case it
is impractical to list all of the elements,) we can give a rule that
defines all of the elements in the set. For example,

{x | x = 2k + 1, k ∈ Z}

means “The set of all values of x such that x = 2k + 1, where
k is an integer;” in other words, this defines the set of all odd

27This is 99% the true and correct definition for what a set is! However,
in the event that you let your sets start using recursive definitions to define
their “collection,” it is possible that you’ll encounter some fun paradoxes, the
resolution of which requires some remarkably powerful mathematics! See the
Zermelo-Fraenkel set theory axioms for the full-on formal definition of what
counts as a set. In the meantime, if you’d like a paradox to help motivate
why this naive definition might not be enough, consider the following (very
strange!) set:

A = {B | B is any set such that B /∈ B}

Is A ∈ A? Or is A /∈ A? 57
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numbers! Similarly, one could define such a set by describing the
form of all of its elements: i.e.

{2k + 1 | k ∈ Z}

is another way we could define the set of all odd integers.

Finally, one can sometimes define a set by listing its first few
elements and hoping that someone sees the pattern. For instance,
one could define the odd numbers by writing

{. . .− 5,−3,−1, 1, 3, 5, . . .}

It’s worth noting that this can backfire sometimes: for instance,
if you were trying to describe the set of all integers of the form
n6 − 35x4 + 259x2 + x − 225, you would also write down the
numbers −5,−3,−1, 1, 3, 5 (but definitely not ±7, or indeed many
other odd numbers!) Only use this if you think your pattern is
very clear and obvious.

6.1.1 Commonly Used Sets and Operations

Here are a handful of frequently used sets:

• N denotes the set of all natural28 numbers, that is all
nonnegative whole numbers. In symbols, we can write N =
{0, 1, 2, 3, . . .}

• Z denotes the set of all integers; in other words, all whole
numbers. In symbols, we could write Z = {. . .−2,−1, 0, 1, 2, . . .}
• Q denotes the set of all rational numbers; i.e. all numbers

that we can express as a ratio of whole numbers. In symbols,
we can write Q =

{
m
n

∣∣ m,n ∈ Z, n 6= 0
}
.

• R denotes the set of all real numbers; that is, all numbers
that we can express via a (possibly infinite) decimal expan-
sion. For example, things like π and

√
2 are real numbers.

• The empty set, denoted by the symbol ∅, is the set contain-
ing nothing: that is, ∅ = {}.

Given a pair of sets A,B, there are several ways in which we can
“combine” A and B into a new set:

• We define the intersection of A and B, denoted by A∩B,
be the set of all elements in A that are also in B. For
example, {1, 2, 3} ∩ {2,a sandwich,π} = {2}.
We think of the intersection of two sets as listing all of the
elements that both sets have “in common.” Formally, we
define A ∩B = {x | x ∈ A and x ∈ B}.

• We define the union of A and B, denoted by A∪B, be the
set of all elements in either A or B. For example, {1, 2} ∪
{2, π} = {1, 2, π}.
You can think of this as “merging” the two sets A,B to-
gether into one set that contains anything that either origi-
nal set had. Formally, we define A ∪B = {x | x ∈ A or x ∈
B}.

• We define the set difference of A and B, denoted by A \
B, be the set of all elements in A that are not in B. For
example, {1, 2, 3}\{1, 2} = {3}, {1, 2, 3}\{4,a sandwich} =
{1, 2, 3}, and {1, 2} \ {2, π} = {1}. Notice in particular that
B can contain elements that aren’t in A: if it does, we just

28People in the fields of computer science, combinatorics, logic, and a few
other fields will also sometimes say that 0 is a natural number. This is one of
those weird inconsistencies that crop up in a language when enough people
use it, like how Americans don’t use ‘u’ when spelling ‘colour’.
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ignore those elements, and only remove the elements in B
that are also in A from A to get the resulting set A \B.

Formally, we define A \B = {x | x ∈ A and x /∈ B}.

If you want to perform multiple operations on a collection of sets,
there is no presumed “PEMDAS/BEDMAS” order-of-operations;
instead, simply group operations using parentheses so that the
order is unambiguous. For example:

({1, 2} ∪ {2, 3}) ∩ ({1, 2, 3, 4} \ {2, 3}) = {1, 2, 3} ∩ {1, 4} = {1}.

When we defined sets earlier, we said that our sets were “un-
ordered:” that is, that {1, 2} and {2, 1} shouldn’t be regarded as
different sets. Sometimes it is useful to refer to sets in which the
elements occur in a fixed order, though: to do this, we use the
following notation.

Definition. An ordered set is a list of objects, separated by
commas and surrounded by parentheses ( and ). For example,
(1, 2, 3) is the ordered set of the three numbers 1, 2, 3 in that or-
der, while (2, 3, 1) is a different ordered set containing the same
elements.

You’ve likely seen ordered sets when working with mathematical
objects like R2 = {(x, y) | x, y ∈ R}, i.e. the Euclidean plane!

This notion of an “ordered set” lets us define a new way to combine
two sets: the Cartesian product!

Definition. Take any two sets A,B. The Cartesian product
A × B is the set of all ordered pairs of elements where the first
coördinate comes from A and the second from B: that is, A×B =
{(a, b) | a ∈ A, b ∈ B}.

For example, if we let A = {1, 2} and B = {1, 3, 4}, we would
have

A×B =
{

(1, 1), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4)
}
.

You can of course generalize this to products of more than two
sets; i.e. you could define A×B×C = {(a, b, c) | a ∈ A, b ∈ B, c ∈
C}.
There is one last commonly used way to construct a new set from
a pre-existing one: the power set! To define it, we first define
the concept of a subset:

Definition. Given any two sets A,B, we say that B is a subset
of A, and write B ⊆ A, if every element of B is also an element
of A. For example, {1, 2, 3} ⊆ Z, Q ⊆ R, and ∅ ⊆ ∅.
Notice that under this definition every set is a subset of itself; if
you want your reader to not count this possibility, you would say
that B is a proper subset of A, and write B ( A.

Definition. Given a setA, we define the power set ofA, denoted
P(A), as the collection of all subsets of A. In other words, P(A) =
{B | B ⊆ A}.

For example,

P({1, 2, 3}) =

{
∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}

}
Notice that in particular a set can contain other sets! This can
lead to some fairly surprising results if you don’t think carefully
about your definitions.

For example, I claim that 1 /∈ P({1, 2, 3}). This might seem some-
what counterintuitive: after all, when we wrote P({1, 2, 3}) above,
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we said that it contains {1}, and surely that means that 1’s an
element of this set, right?

Not quite. You see, the objects {1} and 1 are different things: 1
is a number (and thus is something we know how to multiply and
add and divide and. . . ), while {1} is a set : that is, it’s something
we don’t know how to add or multiply or divide by, but it is
something we can take unions and intersections and other such
things with!

From a computer science perspective, this is like the difference
between 1 thought of as a number and 1 thought of as an ASCII
character; while they look the same, they are stored as very dif-
ferent objects and interact quite differently when you try to per-
form certain operations! If computer science isn’t your cup of tea,
though, here’s a more natural-language explanation for the differ-
ence: think of 1 as an object, and as the set {1} as “the object
1 wrapped up in some packaging.” In this sense, these are very
different things: the “packaging” of the set notation means that
we can do set things to this object, but if we want to perform
arithmetic we need to “remove” the packaging first.

6.1.2 Sets: Two Example Proofs

To give us some practice with set theory arguments, we prove a
few

Claim. If A,B are two sets, then A\ (B∪C) = (A\B)∩ (A\C).

Proof. We proceed by expanding our definitions:

• On the left-hand-side, we have A \ (B ∪ C). By definition,
A \ (B ∪ C) = {x | x ∈ A and x /∈ (B ∪ C)}; as well, by
definition we have , B ∪ C = {x | x ∈ B or x ∈ C}.
By plugging this second definition into our first definition,
we have that A \ (B ∪C) = {x | x ∈ A and ¬(x ∈ B or x ∈
C}. In our first chapter, we saw how to negate statements,
and in particular that ¬(p ∨ q) = ¬p ∧ ¬q; as a result, we
can simplify this to {x | x ∈ A and x /∈ B and x /∈ C}.

• On the right-hand-side, we can similarly use our definitions
to notice that A \B = {x | x ∈ A and x /∈ B} and A \ C =
{x | x ∈ A and x /∈ C}.
By definition, then, the intersection (A \B)∩ (A \C) is just
{x | (x ∈ A and x /∈ B) ∧ (x ∈ A and x /∈ C)}. Logically,
we can simplify this down to {x | x ∈ A and x /∈ B and x /∈
C)}, which is the same expression that the left-hand-side
reduced to. So these two sets are indeed equal!

Claim. If A is a finite29 set, then P(A) will always contain more
elements than A.

Proof. Take any element a ∈ A, and notice that by definition
{a} ⊆ A. Therefore P(A) has one element {a} for every element
a ∈ A. Also notice that for any a 6= b, the sets {a}, {b} are
distinct because they contain different elements; therefore P(A)
has at least as many elements as A itself does.

Also notice that for any set A, ∅ ⊆ A, and so ∅ ∈ P(A)! This is
by definition: recall that X ⊆ A holds if and only if “∀x, if x ∈ X

29The above claim holds even if A is not a finite set! To make sense of this,
though, we’ll need a rigorous notion for what it would mean for two infinite
sets to have “different sizes.” When we get to functions, we’ll talk about how
to do this!
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then x ∈ A” is a true statement. If X = ∅, then X contains no
elements, and so the “if” part of this claim must always be false;
therefore the entire compound if-then statement is vacuously true
(as discussed earlier in our propositional logic section!)

Because ∅ 6= {a} for any a ∈ A (as it contains no elements, while
{a} always contains one element a), this means that we’ve found
another element in P(A).

Therefore P(A) has strictly more elements than A does; it has one
element {a} for every a ∈ A, and also has an additional element
∅ on top of all of the others.

6.2 Relations

With the above set-theoretic language in place, we can now define
the idea of a relation:

Definition. A relation on a set A is any subset T of A × A.
Perhaps more instructively, we can think of a relation as any
way to assign every ordered pair of elements in A to either the
values “true” or “false.”

To see why these two definitions of a relation are equivalent, sim-
ply think of the ordered pairs in T as being the pairs we think our
relation “holds” for (i.e. that we assign to “true,”) and all of the
others as being the ones we think our relation fails on (i.e. that
we assign to “false.”)

This definition is pretty abstract, so we make it concrete with the
following list of examples:

• Equality (=): on any set S, you can define a relation “=”
by saying that x = y is true if x and y are the same object,
and false if x and y are different objects. In other words, the
equals sign you’ve been using your whole life is a relation!

• Mod n: “≡ mod n” is a relation on the set of integers Z,
defined as follows: we say that x ≡ y mod n is true whenever
x− y is a multiple of n, and say that it is false otherwise.

• Less than: the symbol “<” is a relation on the real numbers
R. We say that x < y is true whenever x is a smaller number
than y (i.e. when y − x is positive,) and say that it is false
otherwise.

• Factor: On the set of positive integers, “is a factor of” ,
i.e. the symbol |, is a relation! For any two positive integers
d, n, we say that d|n holds if d is a factor of n, and say that
d|n fails if d is not a factor of n.

• Beats: this is a relation on the set {rock, paper, scissors} in
the game Rock-Paper-Scissors! We can define it by saying
that the three statements “Rock beats scissors,” “Scissors
beats paper,” and “Paper beats rock” are all true, and that
all other pairings of these symbols are false.

There are some properties of relations that make them particularly
nice to work with:

• Reflexivity. We say that a relation R on a set S is reflex-
ive if the following holds: for any x ∈ S, xRx is true.

• Symmetry. We say that a relation R on a set S is sym-
metric if the following holds: for any x, y ∈ S, if xRy holds,
then yRx is also true.

• Transitivity. We say that a relation R on a set S is tran-
sitive if the following holds: for any x, y, z ∈ S, if xRy and
yRz both hold, then xRz is also true.

To get a handle on these properties, let’s check out some of the
examples we gave above and see what properties they satisfy:

61



• Equality (=), on any set S, satisfies all three properties:

– Reflexivity: for any x ∈ S, we have that x = x, by
the definition of equality.

– Symmetry: for any x, y ∈ S, if s = t, then x and y
are the same; so y = x also holds.

– Transitivity: for any x, y, z ∈ S, if x = y and y = z,
then x, y, z are all the same; as a consequence, x = z
must hold.

• “Mod n” (≡ mod n) satisfies all three of these properties,
as well:

– Reflexivity: for any x ∈ Z, x− x = 0 is a multiple of
n; therefore x ≡ x mod n.

– Symmetry: for any x, y ∈ S, if x ≡ y mod n, then
x − y is a multiple of n; consequently y − x is also a
multiple of n, and thus y ≡ x mod n.

– Transitivity: for any x, y, z ∈ S, if x ≡ y mod n and
y ≡ z mod n, then x − y, y − z are all multiples of n;
therefore (x − y) + (y − z) = x − y + y − z = x − z is
also a multiple of n, and thus x ≡ z mod n.

• “Less than” (<), however, does not satisfy all of these prop-
erties:

– Reflexivity: it is not true that for any x ∈ R, that
x < x. To give a counterexample: if we let x = 0, we
can see that 0 6< 0. So this property fails to hold for
all x ∈ R.
(Indeed, it fails to hold for *any* x ∈ R, but we don’t
need to show this to break the property: to disprove a
“for all” statement, we just need to find one example!)

– Symmetry: it is also not true that for any x, y ∈ R, if
x < y, then y < x. For example, it is true that 1 < 2,
and yet 2 6< 1.

– Transitivity: This one is true! For any x, y, z ∈ R
such that x < y and y < z, we can see that z is the
largest of the three, and so conclude that x < z.

• “Beats” fails to satisfy any of these properties:

– Reflexivity: it is not true that for any x ∈ {paper,
scissors, rock} that “x beats x” holds. For instance,
“paper beats paper” is false.

– Symmetry: it is also not true that for any x, y ∈
{paper, scissors, rock}, if “x beats y,” then “y beats
x.” For example, while “paper beats rock” holds, “rock
beats paper” does not hold.

– Transitivity: it is also not true that for any x, y, z ∈
{paper, scissors, rock} such that “x beats y” and “y
beats z,” that “x beats z” must follow. For instance,
while “paper beats rock” and “rock beats scissors,” it
is not true that “paper beats scissors!”

6.2.1 Equivalence Relations

Definition. We call any relation that is both reflexive, symmetric
and transitive an equivalence relation.

Given any set S with an equivalence relation R and an element
x ∈ S, define the equivalence class corresponding to x, denoted

by [x], as the set {s ∈ S | sRx} .

We have worked with equivalence classes before! Let’s consider
mod 3 arithmetic on the integers, as an example. If we look at

the set [0], then, by definition, this is the set of all numbers that
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are congruent to 0 modulo 3; that is,

[0] ={s ∈ Z | s ≡ 0 mod 3}
={. . .− 6,−3, 0, 3, 6 . . .}

We can calculate [1] and [2] in the same way:

[1] ={s ∈ Z | s ≡ 1 mod 3} = {. . .− 5,−2, 1, 4, 7 . . .},
[2] ={s ∈ Z | s ≡ 2 mod 3} = {. . .− 4,−1, 2, 5, 8 . . .}

Notice that every integer in Z is in exactly one of these three sets!
This isn’t an accident, as the following theorem states:

Theorem. Take any set S with an equivalence relation R, and
any x, y ∈ S. Then the following statements are equivalent:

1. xRy 2. [x] = [y]. 3. [x] ∩ [y] 6= ∅

Proof. To prove that three things A,B,C are equivalent, we usu-
ally do something like prove A ⇒ B,B ⇒ C and C ⇒ A; that
way, if any of A,B,C are true, we’ll get that all of them are true
(and in particular that there’s never a case where they have dif-
ferent truth values, which is what equivalence means!)

Take any set S with an equivalence relation R, and any two ele-
ments x, y ∈ S. Let’s write a proof like the above here!

(1)⇒ (2) : We assume that xRy, and seek to show that [x] = [y] (by
showing every member of [x] is in [y], and vice-versa.)
We know that [x] = {s ∈ S | sRx}. For any s ∈ [x], because
sRx, we can use transitivity plus the fact that xRy to con-
clude that sRy; as a result, we have s ∈ [y] = {t ∈ S | tRy}.
Similarly, we can use symmetry to note that because xRy,
we have yRx. As a result, for any t ∈ [y], because tRy and
yRx, we have by transitivity that tRx, and so t ∈ [y].

(2)⇒ (3) : We assume that [x] = [y], and seek to show that [x]∩ [y] 6=
∅. This is easy! If [x] = [y], then their intersection [x] ∩ [y]
is just the original set [x]. This always contains at least the
element x, because reflexivity says that for any x ∈ S, xRx;
so this set is nonempty.

(3)⇒ (1) : We assume that [x] ∩ [y] 6= ∅, and seek to show that xRy.
To do this, notice that if [x] ∩ [y] 6= ∅, there must be some
element s in both [x] and [y]. By definition, this means that
sRx and sRy; by symmetry, we can rewrite this as xRs and
sRy, which becomes xRy by transitivity and finishes our
proof!

This result gives us a nice way to think of equivalence classes:

Definition. A finite partition of a set S is any collection of sets
X1, . . . Xn such that

1. The union X1 ∪ . . . Xn of these sets is S.
2. The intersection of any two different sets Xi, Xj is ∅

Corollary. If S is a set with an equivalence relation R, then the
collection of distinct equivalence classes given by R is a partition
of S.

Proof. If [x] 6= [y], then by the theorem above [x] ∩ [y] must be
the empty set. As a result, the collection of distinct equivalence
classes satisfy the second property of a partition. To see that their
union is all of S, simply note that by reflexivity, we know that each
x ∈ S is in [x], and so the union of all equivalence classes will give
us all of the elements in S!
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6.3 Orderings and Posets

Equivalence relations can be thought of as generalizing of the idea
of “equality”: pretty much every time you have an equivalence
relation R, you can phrase the rule R describes as saying “is the
same up to blah as” or “has the same blah as.” For instance, saying
a ≡ b mod n is just saying that a and b are the same “up to a
multiple of n,” that is, that their difference is just a multiple of
n. Less numerically, if we let C be the set of people in CS225, the
relation “has the same color shoes as” is an equivalence relation
(check it!), and is just the idea of “we can group people together
based on their shoe’s colors.”

In this section, we look at a way to generalize a different sort of
relation: the idea of “comparing” things, i.e. ≤! We start with a
definition:

Definition. We say that a relation R on a set S is antisymmet-
ric if for any distinct x, y ∈ S, if xRy holds, then yRx does not
hold.

We say that a relation R is a partial ordering if it is reflexive,
antisymmetric, and transitive. We call a set S with a partial
ordering R a poset30.

You’ve seen many examples of sets with orderings before:

• The relation ≤ on the real numbers is an ordering! It’s
reflexive (for any x ∈ R, x ≤ x,) it’s antisymmetric (for any
x 6= y ∈ R, if x ≤ y, then y 6≤ x), and it’s transitive (for any
x, y, z ∈ R, if x ≤ y and y ≤ z, then x ≤ z!)

• The relation “occurs earlier (or at the same place) in the
dictionary than”, which for brevity we’ll call the lexico-
graphical order is an ordering on the set of all words! It’s
reflexive: any word occurs at the same place as itself. It’s
antisymmetric: if one word occurs before another, then it
definitely doesn’t also occur afterwards31; that is, because
“cat” occurs before “cataclysm,” we know that “cataclysm”
cannot occur before “cat.” Finally it’s transitive; if a word
w1 occurs before a word w2, which occurs before a word w3,
we can conclude that w1 itself occurs before w3.

• The relation “is a factor of” is an ordering on the positive
integers! Given any integer n, it’s a factor of itself, so we’re
reflexive; if n and m are distinct integers and n’s a factor of
m, then n is smaller than m, and so m cannot be a factor
of n (so we’re antisymmetric), and finally if n’s a factor of
m and m’s a factor of l, then n’s a factor of l, so we’re
transitive.
(Proof of that last claim: by definition, this “is a factor
of” stuff means that an = m, bm = l for two integers a, b.
Combining gives you abn = l, i.e. that n’s a factor of l.)

• Consider the set P of all breakfast foods, with the relation ≥
defined by “is either equal to or tastier than.” For instance,
we have

(delicious perfect pancakes) ≥ (horribly burnt pancakes).

This is a poset! The “either equal to” part of our relation
gives us reflexivity for free; antisymmetry and transitivity
follow from the same arguments we used for ≤ and the real
numbers (except, y’know, with waffles instead of π.)

In a poset, when two objects x, y are such that either xRy or yRx,
we call them comparable. Not all objects are comparable in a
poset! For instance, the two numbers 2 and 3 are not comparable

30Poset is a funny word. If you do not believe me, say it out loud a few
times.

31Assuming you have a not-really-weird dictionary.
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in our “is a factor of” poset: 2 is not a factor of 3, and 3 is not a
factor of 2. Similarly, in our breakfast food poset,

(delicious perfect pancakes) , (delicious perfect french toast)

are two different objects such that neither are really obviously
“tastier” than the other. This is OK, because in a poset we do
not know that any two elements are comparable!

If we have a poset in which every two elements x, y are com-
parable, we call it a totally ordered set, because everything in
it is comparable! Words under the dictionary order, and ≤ on the
real numbers, are examples of totally ordered sets, while the fac-
tors and breakfast food posets are not examples of totally ordered
sets. We call a totally ordered set a toset32 for short.

Given a poset P = (X,≤), it can be very useful to visualize P by
drawing it as a diagram! We do this as follows:

• Let M0 = {x ∈ P | there is no y 6= x ∈ P with x ≤ y}.
We call M0 the collection of all maximal elements, and say
that any element of M0 is a maximal element in P .

At the top of a piece of paper, draw vertices in a row, one
for each element of M0.

• Now, take the collection M1 of all of the elements “directly
beneath” M0; that is, form the set

M1 = {x ∈ P | ∃y1 6= x ∈ P such that x ≤ y, but

¬(∃ distinct y1, y2 6= x ∈ P such that x ≤ y1 ≤ y2.}

of all elements with exactly one object greater than them
under our relation. Draw these elements in a row beneath
the M0 vertices, and draw a line from any element in M0 to
any element in M1 whenever they are comparable.

• Now, take the collection

M2 = {x ∈ P | ∃ distinct y1, y2 6= x ∈ P such that x ≤ y1 ≤ y2, but

¬(∃ distinct y1, y2, y3 6= x ∈ P such that x ≤ y1 ≤ y2 ≤ y3.}

of all points with only two things greater than them under
our relation. Draw these points beneath the M1 points, and
connect points in M1 to points in M2 if they are comparable.

• Repeat this until you’ve drawn all of P !

We call this diagram the lattice diagram, or Hasse diagram,
for our poset. 90

30 45 18

10 15 6 9

5 2 3

1

This is perhaps overly abstract / best understood with an exam-
ple. Consider the “is a divisor of” relation from before, except
instead of working with all of Z, let’s just let our set S be the set
of all divisors of some number. Say, for instance, 90:

90, 45, 30, 18, 15, 10, 9, 6, 5, 3, 2, 1.

If we group elements as suggested above, we get

• M0 = 90,
• M1 = 45, 30, 18,
• M2 = 15, 10, 9, 6,
• M3 = 5, 3, 2,
• M4 = 1.

If we draw the diagram as described, we get the lattice at right!

Notice that the lattice above actually contains all of the informa-
tion about our poset: if we want to know if any two elements x, y

32Toset is another funny word.
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are comparable, we just need to find them in the diagram above,
and see if there is a strictly ascending path from the lower of our
elements to the higher; the existence of any such path will guaran-
tee (by transitivity) that those elements are comparable! So, for
example, 2 ≤ 18, as the ascending path 2→ 6→ 18 demonstrates.
However, 45 and 2 are incomparable, as we cannot find any path
from 2 to 45 that is going up. This makes sense; because 2 6 |45
and 45 6 |2, we know that these two elements are incomparable!

There are some beautiful open questions we can talk about right
now with these diagrams. In particular, consider the following
two-player game:

• Player 1 picks out an element on the lattice, and deletes
it, along with every element “beneath” that element (i.e. if
player 1 pick out x, they delete x and every y ≤ x from our
lattice.)

• Player 2 then picks out a remaining element in the lattice,
and deletes it along with all elements beneath it.

• Players repeat this process until there are no elements left
in the lattice. The player who chose the last element loses.

Determining who wins this game on many families of posets is
often an open problem!

6.3.1 Maximal, minimal, greatest, and least

A useful idea when making the poset earlier was the idea of a
maximal element: we generalize this idea here!

Definition. Given a poset (P,≤), we say that an element x is a
maximal element if there is no other element y ∈ P such that
x ≤ y; similarly, we say that an element x is a minimal element
if there is no other y ∈ P such that y ≤ x.

Note that a poset can have many maximal and minimal elements,
or none at all! For instance, the real numbers R under the ordering
≤ do not have any maximal or minimal elements: for any x ∈ R,
we can always find other real numbers that are bigger and smaller
than x. As well, the breakfast food poset from before arguably has
many maximal elements: “perfect pancakes” and “perfect waffles”
and “perfect scones” are all breakfast foods that by definition
don’t have things better than them, even if there isn’t necessarily
a single one that beats the others!

If a poset P has exactly one maximal element, we call that element
the greatest element in the poset; similarly, if P has exactly one
minimal element, we call that element the least element in the
poset. For instance, 90 is the greatest element in the divisor poset
we drew above, and 1 is the least element.

To help us make sense of this, we draw a second example here:

Example. Let � be a relation on strings defined as follows: we
say that string A is � to string B if A is a “substring” of B: that
is, if you can make B by taking A and adding some characters to
either the start or end (or both!) of A. For example, “cat” is a sub-
string of “concatenate”, so “cat”�“concatenate;” similarly “and”
is a substring of “sandwich,” so we have “and”�“sandwich.” notebook bookcase

note book case

not boo as

If we do this, then � forms a poset relation on any collection of
strings (prove this, if you want an exercise!) In particular, if we
look at {bookcase, book, case, as, note, notebook, not, boo}, we
get the following poset:

If we do this, then the process described above generates the Hasse
diagram at right:

This poset has two maximal elements, “notebook” and “book-
case,” and three minimal elements: “not,” “boo,” and “as.”
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See tutorial 8 for more examples!

With relations now (hopefully) well-understood, we turn to the
last subject of this chapter: functions!

6.4 Functions

6.4.1 The Definition of a Function

Definition. A function f : A→ B consists of three parts:

• A set A, called the domain of f ; we think of A as the set
of all valid inputs to the function f .

• A set B, called the codomain of f ; we think of B as the
set of all valid potential outputs of the function f .

• A rule f , that matches (or sends, or maps) elements in A to
elements in B. This rule satisfies the following property:

For every a ∈ A, there is exactly one b ∈ B such that f(a) = b.

In other words, we never have a value a ∈ A for which f(a) is
undefined, nor do we ever have a value a ∈ A where there are
multiple outputs (i.e. we never have f(a) = b and f(a) = c
for different values a, c.)

Typically, to define a function we’ll write something like “Consider
the function f : (0,∞) → R, defined by the rule f(x) = 1

x . This
definition tells you three things: what the domain is (the set the
arrow starts from, which is (0,∞) in this case), what the codomain
is (the set the arrow points to, which is R in this case), and the
rule used to define f .

Example. The function f : R→ R defined by the rule f(x) = x2

is a function, with domain and codomain both equal to R.

To see why, note that by definition f is a function if for every x in
the domain, there is exactly one value y in the codomain that x is
sent to. But for any x ∈ R, there is exactly one possible number
that is x2, and so there is exactly one possible element y = x2

that our function sends x to.

Note that the only condition we were concerned about was en-
suring that for every value x in the domain, there is exactly one
value in the codomain that our function sends x to. A common
misconception that people have about functions is that we must
also ensure that every value in the codomain is mapped to. This is
not at all necessary! Even though there is no x in the domain such
that f(x) = x2 = −1, we still think that f : R→ R, f(x) = x2 is
a function.

Example. The relation f : R→ R defined by the rule “f(x) = y
if and only if x = y2” is not a function. There are many reasons
for this:

• There are values in the domain that do not get mapped
to any values in the codomain by our rule. For instance,
consider x = −1 ∈ R. There is no value y ∈ R such that
−1 = y2; therefore, x is not mapped to any value y in the
codomain, and so we do not regard f as a function.

• There are also values in the domain that get mapped to
multiple values in the codomain by our rule. For instance,
consider x = 1 ∈ R. Because 1 = y2 has the two solutions
y = ±1, this rule maps x = 1 to the two values y = ±1; this
is another reason why f is not a function.

Example. The relation f : [0,∞) → [0,∞) defined by the rule
f(x) = y if and only if x = y2 is a function. To see why, take any
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x in the domain [0,∞); if f is a function, there should be exactly
one value y in the codomain [0,∞) that gets matched to x. This
is indeed true; if x ≥ 0 then we can simplify x = y2 to

√
x = |y|,

and if we know that y ∈ [0,∞) we can remove the absolute value
signs to get

√
x = y, and in particular see that there is exactly

one value that x is mapped to.

Typically, with functions like the first and third examples we’ve
studied where the rule is relatively simple to write down, we will
write something like “f : R → R, f(x) = x2” or “f : [0,∞) →
[0,∞), f(x) =

√
x.”

With that said, not all functions can be written down this nicely.
Consider the following example:

Example. The map f : { , π, , } → { , , , } defined
by the rules

f( ) = , f(π) = , f( ) = , f( ) = , f( ) =

is a function, because every element in the domain is sent to ex-
actly one element in the codomain.

A useful way to visualize functions defined in this piece-by-piece
fashion is with a diagram: we draw the domain at left, the codomain
at right, and connect an element x in the domain to an element y
in the codomain when our function maps x to y:

π

Domain

Codomainf

6.4.2 Useful Function Properties: Range

Now that we know what a function is, we now turn our atten-
tion to various sorts of properties that functions can have that
may make them interesting or useful to study. We start with one
that you’ve likely encountered before: the idea of the range of a
function.

Definition. Take any function f : A→ B. We define the range
of f as the set of all values in the codomain that our function sends
values in the domain to. Formally, we express this as follows:

range(f) = {y ∈ B | there is some x ∈ A such that f(x) = y}.

Example. Consider the function f : R → R given by the rule
f(x) = x2 − 1. This function has range [−1,∞).

To see why, simply notice that for any y ∈ R, we can express
y = x2 if and only if y ∈ [0,∞); if y is indeed nonnegative then
we can set x =

√
y to get a value of x such that x2 = y, while if

y is negative it is impossible to square any real number and get
y as the output. Therefore, we can express y = x2 − 1 if and
only if y ∈ [−1,∞), as subtracting 1 from the right-hand-side just
increases the range of possible y-values by 1.
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Example. Consider the function f : Z → R given by the rule
f(x) = 2x − 1. This function has range equal to all of the odd
numbers.

This is because for any odd number n, we can write n = 2k − 1
for some k ∈ Z by definition; this gives us f(k) = n, and shows
us that our range contains all odd numbers. Conversely, for any
k ∈ Z, f(k) = 2k − 1 is an odd number, so we know that odd
numbers are the only possible things we can get in our range; as
a result we have that the set of all odd numbers is our range.

6.4.3 Useful Function Properties: Injective and Surjec-
tive

The idea of range above lets us talk about the values that our
function can output. Relatedly, the definitions of injective and
surjective functions let us talk about “how often” our function
outputs a given value:

Definition. Take any function f : A→ B. We say that f is:

• injective, or one-to-one, if for every b ∈ B, there is at most
one a ∈ A such that f(a) = b.

• surjective, or onto, if for every b ∈ B, there is at least
one a ∈ A such that f(a) = b.

• bijective if for every b ∈ B, there is exactly one a ∈ A
such that f(a) = b.

Note that bijective literally just means “injective and surjective.”

-1

0

1

2

3

-3 -2 -1 0 1 2 3

Example. Consider the function f : R → R given by the rule
f(x) = x2.

This function is not injective. To see why, we just need to show
that the injective condition fails somewhere; that is, that there is
some value y in the codomain with more than one corresponding
value x in the domain. This is not hard: if we look at y = 1, for
instance, we can see that x = 1 and x = −1 both get mapped to
y, as f(1) = (1)2 = 1 and f(−1) = (−1)2 = 1. So the injective
condition fails.

This function is also not surjective. To see why, we just need to
show that the surjective condition fails somewhere; that is, that
there is some y in the codomain that no values in the domain map
to. This is also straightforward; if we pick y = −2, for instance,
we know that there is no x such that f(x) = x2 = −2, and so
have shown that the surjective condition fails.

Example. Consider the function f : N → N given by the rule
f(n) = 2n.

This function is injective. There are several ways to show this.
One technique, that you’ll see in many places, is the following:

• Take any value y in the codomain.

• Let x1, x2 be any two values in the domain such that f(x1) =
y = f(x2).

• From here, the statement that f is one-to-one is equivalent
to saying that x1 and x2 are equal (as if they must be equal
then we’ve proven that there’s no way to have multiple dif-
ferent values in the domain mapping to the same y in the
codomain.) So, try to prove that x1 must be equal to x2.
If you succeed, you’ve proven that f is one-to-one; if you
cannot, then perhaps f is not injective!
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In this specific case, take any y in the codomain, and suppose that
x1, x2 are two values in our domain such that f(x1) = y = f(x2).
But f(x1) = 2x1 = f(x2) = 2x2 implies that x1 = x2! As a
consequence, we cannot have two different values of x that map
to the same y, and so our function is injective. (This method is
overkill here and you can show this directly with less work, but
it’s worth seeing this proof method in a simple case before using
it on something trickier.)

This function is not surjective, as there are values in the codomain
(for example, any odd number in N) that are not mapped to by
any element in the domain.

Example. Consider the map f : { , π, , } → { , , , }
that we looked at earlier.

π

Domain

Codomainf

This function is not injective, as there is an element in the codomain

(say, ) that is mapped to by more than one element in the
domain. It’s also not surjective, as there are elements in the

codomain (say, ) that are not mapped to by any elements in
the domain.

Example. Consider the function g : { , , } → { , , }
with rules given by the diagram

Domain Codomain

g

This function is injective and surjective, as every element in the
codomain is mapped to by exactly one element in the range.

Sometimes we look at more theoretical sorts of questions around
injective and surjective functions:

Claim. If f : X → Y and g : Y → Z are both surjective func-
tions, then g ◦ f : X → Z is also a surjective function.

Proof. The first step in a proof like this, as with many proofs, is
to carefully write out what we know:

1. We know that f : X → Y is . In other words: for any y ∈ Y ,
there is an x ∈ X such that f(x) = y.
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2. We also know that g : Y → Z is surjective; that is, for any
z ∈ Z, there is a y ∈ Y such that g(y) = z.

We want to show that g ◦ f is surjective as well: that is, that for
any z ∈ Z, there is some x ∈ X with g(f(x)) = z. How can we
do this?

Well: take any z ∈ Z. We want to find a value of x such that
g(f(x)) = z, and all we have are properties (1) and (2) above.

None of them immediately give us a value of x that does this, but
point (2) does tell us that for our value z ∈ Z, we can always find
a value y ∈ Y such that g(y) = z.

If we take that value of y and apply point (1) above, it tells us
that we can find a value of x ∈ X such that f(x) = y.

Together, then, this means that for any value of z, we can find
corresponding values of y, x such that g(f(x)) = g(y) = z. But
this is what we wanted: for any z ∈ Z, we found an x ∈ X such
that (g ◦ f)(x) = z! So we’ve proven our claim.

6.4.4 Cardinality

One thing we noticed in class is that we could make a bijection
f : A→ B if and only if the two sets A,B had the same number of
elements. With this idea in mind, we make the following definition

Definition. We say that two sets A,B are the same size (for-
mally, we say that they are of the same cardinality,) and write
|A| = |B|, if and only if there is a bijection f : A→ B.

The nice thing about this definition is that it lets us talk about
infinite sets, not just finite ones! To test these ideas out, let’s
start with some calculations to build our intuition:

Question. Are the sets N and N ∪ { } the same size?

Answer. Well: we know that they can be the same size if and
only if there is a bijection between one and the other. So: let’s try
to make a bijection! In the typed notes, the suspense is somewhat
gone, but (at home) imagine yourself taking a piece of paper,
and writing out the first few elements of N on one side and of

N ∪ { } on the other side. After some experimentation, you
might eventually find yourself with the following map:

1

2

3

4

...

Domain

1

2

3

4

...

Codomain

Formally, this is a function defined by the rule f(1) = and
f(n) = n− 1 for any n ≥ 2.

This is clearly a bijection; so these sets are the same size!
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In a rather crude way, we have shown that adding one more ele-
ment to a set as “infinitely large” as the natural numbers doesn’t
do anything to it! – the extra element just gets lost amongst all
of the others.

This trick worked for one additional element. Can it work for
infinitely many? Consider the next proposition:

Proposition. The sets N and Z are the same cardinality.

Proof. Consider the following map:

1

2

3

4

5

...

Domain

...

-2

-1

0

1

2

...

Codomain

Formally, this function can be defined as follows:

f(n) =


n− 1

2
, if n is odd, or

−n
2
, if n is even.

This is a bijection (justify this to yourself if you don’t see why!),
so these sets are the same cardinality.

So: we can in some sense “double” infinity! Strange, right? Yet,
if you think about it for a while, it kind of makes sense: after all,
don’t the natural numbers contain two copies of themselves (i.e.
the even and odd numbers?) And isn’t that observation what we
just used to turn N into Z?

After these last two results, you might be beginning to feel like all
of our infinite sets are the same size. In that case, the next result
will hardly surprise you:

Proposition. The sets N and Q are the same cardinality.

Proof. First, take any rational number x ∈ Q. By definition, note
that we can write x as a fraction p

q , where p and q are integers
and q > 0; moreover, by dividing through by common multiples,
we can make it so that p and q have no factors in common.

This process assigns each rational number to exactly one such
fraction p

q . For each such fraction, draw a point at (p, q) in R2:
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In the picture above, every rational number is represented by ex-
actly one blue dot!

Now, on this picture, draw a spiral that starts at (0, 0) and goes
through every point of Z× Z, as depicted below:

We use this spiral to define our bijection from N to Q as follows:

f(n) = the n-th rational number whose point our spiral has
crossed, found by starting at (0,0) and walking out along our

spiral.

This function hits every rational number exactly once by construc-
tion; thus, it is a bijection from N to Q. Consequently, N and Q
are the same size.

6.4.5 The Reals

At this point, it almost seems inevitable that every infinte set
will wind up having the same size!

This is false.

Theorem. The sets N and R have different cardinalities.

Proof. (This is Cantor’s famous diagonalization argument.) Sup-
pose not – that they were the same cardinalities. As a result,
there is a bijection between these two sets! Pick such a bijection
f : N→ R.

For every n ∈ N, look at the number f(n). It has a decimal rep-
resentation. Pick a number an,trash corresponding to the integer
part of f(n), and an 1, an 2, an 3, . . . that correspond to the digits
after the decimal place of this decimal representation – i.e. pick
numbers an i such that

f(n) = an trash.an 1an 2an 3 . . .
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For example, if f(4) = 31.125, we would pick a4 trash = 31, a4 1 =
1, a4 2 = 2, a4 3 = 5, and 0 = a4 4 = a4 5 = a4 6 = . . ., because the
integer part of f(4) is 31, its first three digits after the decimal
place are 1,2, and 5, and the rest of them are zeroes.

Now, get rid of the antrash
parts, and write the rest of these num-

bers in a table, as below:

f(1) a1 1 a1 2 a1 3 a1 4 . . .
f(2) a2 1 a2 2 a2 3 a2 4

f(3) a3 1 a3 2 a3 3 a3 4

f(4) a4 1 a4 2 a4 3 a4 4

...
...

. . .

In particular, look at the entries a1 1a2 2a3 3 . . . on the diagonal.

Let’s make a number that disagrees with 0.a1 1a2 2a3 3 . . . in every
possible decimal place! We define such a number B as follows:

• Define bi = 2 if ai i 6= 2, and bi = 8 if ai i = 2. (There is
nothing special about 2 and 8 here; the relevant property is
that bi 6= ai i for every i! Feel free to pick your own values
here.)

• Define B to the be the number with digits given by the bi –
i.e.

B = .b1b2b3b4 . . .

Because B has a decimal representation, it’s a real number! So,
because our function f is a bijection, it must have some value
of n such that f(n) = B. But the n-th digit of f(n) is an,n by
construction, and the n-th digit of B is bn – by construction, these
are different numbers! So f(n) 6= B, because they disagree at their
n-th decimal place!

This is a contradiction to our original assumption that such a
bijection existed. Therefore, we know that no such bijection can
exist: as a result, we’ve shown that the natural numbers are of a
strictly “different” size of infinity than the real numbers.

Crazy! This is how in a sense about how half of the mathematics
we do as researchers goes: by combining relatively mundane ideas
(the concepts of bijection and proof by contradiction) we can get
to remarkably strange results (there are different sizes of infinity!)

6.4.6 Combining Functions and Inverse Functions

Given any of these building block functions, we can combine them
in several ways:

• Given any two functions f, g : A → R, for A,⊂ R, we can
combine these functions via arithmetic: that is, we can
define the functions f + g, f · g, and f − g, all of which have
domain A and codomain R. If g(x) 6= 0 for all x ∈ A, we
can also form the function f

g , which also has domain A and
codomain R.

• Given any two functions f : A → B, g : C → D where
range(f) ⊆ C, we can form the composition g ◦ f : A→ D
of these two functions, defined by the rule g◦f(a) = g(f(a))
for any a ∈ A.

For example, if f, g : R→ R and f(x) = x+1, g(x) = x2−1,,
we would have g◦f(x) = g(f(x)) = g(x+1) = (x+1)2−1 =
x2 + 2x. Notice that this is different to f ◦ g(x) = f(g(x)) =
f(x2− 1) = (x2− 1) + 1 = x2; in general, f ◦ g and g ◦ f are
usually different functions.
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• Finally, we can define a function in a piecewise manner by
giving different rules for different parts of its domain: e.g.
we could define the absolute value f : R→ R, f(x) = |x| by

|x| =
{

x, if x ≥ 0
−x, if x < 0

By combining “basic” functions like sin(x), cos(x), tan(x), ex, ln(x),
|x|,
√
x, 1

x , x using these tools you can create almost every function
that we study in mathematics!

There is one exception, though: we’re missing the idea of an in-
verse function. We define this here:

Definition. Take a function f : A→ B. We say that g : B → A
is an inverse of f if the following two properties hold:

• For all a ∈ A, we have g(f(a)) = a.

• For all b ∈ B, we have f(g(b)) = b.

The idea here is that g “undoes” whatever it is that f does, return-
ing the same input that was entered. If such an inverse function
g exists, we denote it by writing f−1.

Equivalently, we can define the inverse by defining the identity
function iX of any set X as follows: for any x ∈ X, iX(x) = x.
In other words, the identity function is the function whose input
is its output; it “does nothing.”

A function f : X → Y has another function f−1 : Y → X as
its inverse if f ◦ f−1 = iY and f−1 ◦ f = iX . (This is the exact
same as above, except we’re talking about just two equations of
functions, as opposed to a ton of equations with values plugged
in!)

Example. The function f : R→ R, f(x) = 3x−1 has an inverse;
namely, it has the inverse f−1 : R → R defined by f−1(x) =
x+ 1

3
. To prove this, we simply check the two properties listed

above for being an inverse:

• For all a ∈ R, we have f−1(f(a)) = a. We check this, and

indeed: f−1(f(a)) = f−1(3a− 1) =
(3a− 1) + 1

3
= a.

• For all b ∈ R, we have f(f−1(b)) = b. We check this as well,

and it works: f(f−1(b)) = f−1

(
b+ 1

3

)
= 3 · b+ 1

3
− 1 = b.

A process that can sometimes find an inverse (not always, but
sometimes) is the following:

• Take any function rule f(x) that you want to find an inverse
for.

• Look at the equation f(x) = y. This is currently an equation
for y in terms of x.

• Try to “reverse” this: i.e. solve this equation for x in terms
of y! You should get some expression of the form g(y) = x,
if this works.

• If you succeed, then this g is probably f−1 (though you need
to check whether g ◦ f(x) = x for all x and f ◦ g(y) = y for
all y first.)

For example, if we took the rule f(x) = 3x − 1 from above, we
could actually find its inverse as follows:

• Set 3x− 1 = y.

• Try to solve for x; you can do this by adding 1 to both sides
to get 3x = y + 1, and thus x = y+1

3 .

• This gives us a function g(y) = y+1
3 . This is the inverse of

f , as we proved earlier!
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For functions described by diagrams, inverses are remarkably straight-
forward to find:

Example. The function g : { , , } → { , , } that we
studied before, with diagram

Domain Codomain

g

has an inverse given by “reversing” all of these arrows: that is, if

we define g−1 : { , , } → { , , } by the diagram

Codomain Domain

, or equivalently

Domain Codomain

g−1 g−1

we have

g ◦ g−1:

g g−1

g−1 ◦ g:

g−1 g

Checking the pictures above verifies that g◦g−1 and g−1◦g satisfy
the inverse property.

Inverses are closely tied to the injective and surjective properties
we studied earlier, as the following theorem
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Theorem. If a function f : X → Y is a bijection, then it has an
inverse f−1 : Y → X. Conversely, if a function has an inverse,
then it must be a bijection.

Proof. We start by proving the first half of this result (that bi-
jection ⇒ an inverse exists.) To do this, start by noting that by
definition, if f is a bijective function, then for every y ∈ Y there
is exactly one x ∈ X such that f(x) = y.

Define the function g : Y → X as follows: for any y ∈ Y , let g(y)
be defined as the unique x ∈ X such that f(x) = y. This is a
function, as this definition gives us exactly one output for every
y ∈ Y because f is a bijection.

I claim that g = f−1; i.e. that f ◦ g(y) = y for all y ∈ Y , and that
g ◦ f(x) = x for all x ∈ X.

To see this, take any y ∈ Y . Notice that by definition g(y) is the
unique x such that f(x) = y; therefore f(g(y)) = f(x) = y, as
desired.

Now, take any x ∈ X, and let y = f(x). By definition, g(y) is the
unique x such that f(x) = y: therefore g(f(x)) = g(y) = x, as
desired!

This establishes the first half of our proof. To see the second half
(that any invertible function must be a bijection,) simply notice
the following: if f : X → Y has inverse f−1 : Y → X, then for
any y ∈ Y there is exactly one output f−1(y), because f−1 is a
function and thus has precisely one output for any input.

As a consequence, there must exist at least one x in X, namely x =
f−1(y), such that f(x) = y; this is because f(f−1(y)) = y by defi-
nition. As well, there cannot exist distinct values x1, x2 ∈ X such
that f(x1) = f(x2) = y; this is because f−1(y) = f−1(f(x1)) = x1

and f−1(y) = f−1(f(x2)) = x2 must be equal, as noted above.

In other words, f is a bijection, as claimed.

This property comes in quite handy! In general, it can be hard
to see whether a function has an inverse directly; it is often easier
to check the injective and surjective properties, and conclude via
the above that our function has an inverse.
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Compsci 225 Lecturer: Padraic Bartlett

Chapter 7: Combinatorics
Week 10 UoA 2018

7.1 How to Count

This might seem like a silly section title; counting, after all, is
something that you learned how to do at a very young age! So
let’s clarify what we mean by “counting.”

On one hand, it is very easy to see that there are four elements in
a set like

A = {3, 5, 7,Snape}.

Things can get trickier than this, however. Consider the following
five problems, in which you are asked to “count” some object:

• How many strings of five letters are palindromes (i.e. can
be read the same way forwards and backwards?)

• Pizza My Heart is a great pizza place that I loved back when
I was a lecturer in California. Suppose that I went there and
they had the following deal on pizzas: for 13$, they’d sell
you a pizza with any two different vegetable toppings, or
any one meat topping. If there are m meat choices and v
vegetable choices, and for each pizza I also got to choose one
of s sauces, how many different pizzas could I order under
this deal?

(0,0)

(2,2)

(0,0)

(2,2)
• How many injective functions exist from {0, 1, 2, 3, 4} to
{0, 1, 2, 3, 4, 5}?

• A lattice path in the plane R2 is a path joining integer
points via steps of length 1 either upward or rightward. For
any two natural numbers a, b ∈ N, how many lattice paths
are there from (0, 0) to (a, b)?

• How many seven-digit phone numbers exist in which the
digits are all nondecreasing?

• What is the coefficient of x8y7 in (x+ y)15?

• How many positive integers between 1 and 10,000 are not
divisible by 2, 3 or 5?

All of these are “counting” problems, in that they’re asking you
to figure out how many objects of a specific kind exist. However,
because the sets in question are trickily defined, these problems
are much harder than our “how many elements are in {3, 5, 7,
Snape} question.

To approach them, we’ll need some new counting techniques! This
is the goal of this chapter: we’re going to study combinatorics,
the art of counting, and develop techniques for solving problems
like the ones above.

7.1.1 How to Count: Multiplication

We start by considering a new problem:

Problem. Suppose that we have k different postcards and n
friends. In how many ways can we mail out all of our postcards
to our friends?
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Solution. In the setup above, a valid “way” to mail postcards to
friends is some way to assign each postcard to a friend (because
we’re mailing out all of our postcards.) In other words, a “way” to
mail postcards is just a function from the set33 [k] = {1, 2, 3, . . . k}
of postcards to our set [n] = {1, 2, 3, . . . n} of friends!

In other words, we want to find the size of the following set:

A =
{
f
∣∣∣ f is a function with domain [k] and codomain [n]

}
We can do this! Think about how any function f : [k] → [n] is
constructed. For each value in [k] = {1, 2, . . . k}, we have to pick
exactly one value from [n]. Doing this for each value in [k] com-
pletely determines our function; furthermore, any two functions
f, g are different if and only if there is some value i ∈ [k] at which
we made a different choice (i.e. where f(i) 6= g(i).)

n choices · n choices · . . . · n choices︸ ︷︷ ︸
k total slots

Consequently, we have

n · n · . . . · n︸ ︷︷ ︸
k n′s

= nk

total ways in which we can construct distinct functions. This gives
us this answer nk to our problem!

This looks like an excellent sort of answer to a counting problem:
given a set defined by parameters n, k, we created a closed-form
algebraic expression nk for the number of elements in that set!
Again, under any theory of counting that we come up with, this
should count as a pretty good answer.

Alongside our answer, we also came up with a fairly interesting
method for counting at the same time. Specifically, we had a set
A of the following form:

1. Each element f of A could be constructed by making k
choices in a row.

2. Each time we made one of those choices, we had n total
possibilites to pick from. Also, none of those choices affected
the possibilities for our other choices; that is, we could make
any choice we wanted for a value that f would output, and
it would not affect the possibilities for the values f could
output on any other values.

3. Therefore, we had n · n · . . . · n︸ ︷︷ ︸
k n′s

= nk total elements in A.

This can be generalized as follows:

Observation. (Multiplication principle.) Suppose that you
have a set A, with the following properties:

• Each element of A can be thought of as the consequence of
making k consecutive choices.

• There is a fixed34 number ni of possibilities for the i-th
choice made in constructing any such element of A.

33Some useful notation: [n] denotes the collection of all integers from 1 to
n, i.e. {1, 2, . . . n}.

34By “fixed,” we mean the following: the number of such choices is not
affected by our other choices. That is, we’ll always have ni options for our
i-th choice, no matter what our earlier choices actually were.
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Then there are

n1 · n2 · . . . · nk =

k∏
i=1

ni

total elements in A.

A useful special case of this principle is the following:

Observation. (Ordered choice with repetition.) Suppose
that you are choosing k objects from a set of n things, where you
care about the order in which you choose your objects and can

repeatedly pick the same thing if desired. There are nk many
ways to make such a choice.

This principle is remarkably handy! With it, we can already an-
swer one of our five problems from earlier:

Problem. How many strings of five letters are palindromes (i.e.
can be read the same way forwards and backwards?)

Solution. First, notice that any five-letter palindrome can be
constructed by taking an arbitrary three-letter string and sticking
its second and first characters at the end of the string: e.g. you
can transform “rad” to “radar,” “ten” to “tenet” and “eev” to
“eevee.” This process is clearly reversible: i.e. you can take any
five-letter palindrome and cut off its last two letters to get a 3-
letter string. Therefore this process is a bijection, and so the set
we are counting is equal in size to the set of all three-letter strings.

This can be counted by our multiplication principle! Any such
three-letter string is formed by making three choices in a row,

and we have 26 choices for each letter; this gives us 263 many
such strings, and thus 263 many five-letter palindromes.

This can get a bit more complex, however. Let’s try changing our
postcard problem a bit from before:

Problem. Suppose that we still have n different kinds of post-
cards, k friends, and that we still want to mail these postcards
to our friends. Last time, however, it was possible that we just
mailed all of our postcards to the same friend. That’s a bit silly,
so let’s add in a new restriction: let’s never send any friend more
than one postcard.

In how many ways can we mail out postcards now?

We can still describe each way of sending postcards as a sequence
of choices:

? choices · ? choices · . . . · ? choices︸ ︷︷ ︸
k total slots

As before, we still have n possibilities for who we can send our first
card to. However, the “ordered choice with repetition” principle
doesn’t immediately apply here: because we don’t want to repeat
any of our friends, we only have n− 1 choices for our second slot,
instead of n as before! In general, we have the following sequence
of choices:

n choices · n-1 choices · n-2 choices · . . . · n- (k-1) choices︸ ︷︷ ︸
k total slots

,

which translates into

n · (n− 1) · . . . · (n− (k − 1))

many choices in total.
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(A common question I get here: why do we go to n − 1 and not
n in the product above? Well: we have k total slots. In the first
slot, none of our choices were eliminated yet! In the second slot,
however, we’ve eliminated one choice with our first slot. By the
third slot we’ve eliminated two possibilities, by the fourth we’ve
eliminated three possibilities, and in general in the i-th slot we’ve
eliminated i−1 possibilities. This leaves us with k−1 possibilities
eliminated by the time we get to the k-th slot!)

Notice that if k > n, the above product contains a n−n term and
is 0. Otherwise, a convenient way to describe the above for k ≤ n
is as the following quantity:

n · (n− 1) · . . . · (n− (k − 1)) =

(
n · (n− 1) · . . . · (n− (k − 1))

)
·
(

(n− k) · (n− (k + 1)) · . . . · 3 · 2 · 1
)

(
(n− k) · (n− (k + 1)) · . . . · 3 · 2 · 1

)
=

n!

(n− k)!
.

Here, by n! we mean n “factorial”35 the product of all of the
natural numbers between 1 and n inclusive. For example, 4! =
1 · 2 · 3 · 4 = 24.

We summarize this result in the following observation:

Observation. (Ordered choice without repetition.) Sup-
pose that you are choosing k objects from a set of n things, where
you care about the order in which you choose your objects, but

can only pick an object at most once. There are n!
(n−k)! many

ways to make such a choice if k ≤ n, and 0 ways otherwise (as
we’ll run out of choices!)

We can use this idea to answer another one of our problems from
before:

Problem. How many injective functions exist from {0, 1, 2, 3, 4}
to {0, 1, 2, 3, 4, 5}?

Solution. Think of defining a function f : {0, 1, 2, 3, 4} → {0, 1, 2, 3, 4, 5}
as just making five choices for where to send each of f(0), f(1), f(2), f(3),
and f(4) in the codomain set {0, 1, 2, 3, 4, 5} Because our func-
tion is injective, we never send any two elements to the same
value in the codomain; i.e. we never repeat any choice! There-
fore, by our logic above, because the domain contains 5 elements
and the codomain contains 6 values to choose from, there are

6!
(6−5)! = 6!

1 = 6 · 5 · 4 · 3 · 2 = 720 many such injective functions.

Let’s tweak the postcard problem again!36

Problem. Suppose that we have just one friend that we want to
send postcards to. We still have n different kinds of postcards,

35Note that by convention, we define 0! = 1. There are three reasons
commonly given for this:

• Another definition for n! is the number of ways of ordering a list of n
objects. There is exactly one way to order an empty list, so 0! = 1.

• You can interpret 0! as the “empty product;” if you think of n! as
the product of the first n positive integers, then 0! is the product of
nothing. Because 1 is the multiplicative identity, it makes sense to
return 1 here, by the same reasoning that we use to say that n0 = 1
for any nonzero n.

• It makes all of our formulas work! I.e. if you didn’t have 0! = 1, you’d
have to have a ton of special cases in many of the formulas in this class.

36In mathematics: whenever you have a problem at hand, constantly look
for modifications like these to make to the problem! If you’re stuck, it can give
you different avenues to approach or think about the problem; conversely, if
you think you understand the problem, this can be a way to test and deepen
that understanding.
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but now want to send that one friend k different postcards in a
bundle (say as a gift!) In how many ways can we pick out a set of
k cards to send our friend?
In this problem, we have n different kinds of postcards, and we
want to find out how many ways to send k different cards to a
given friend. At first glance, you might think that this is the
same as the answer to our second puzzle: i.e. we have k slots, and
we clearly have n choices for the first slot, n − 1 choices for the
second slot, and so on/so forth until we have n − (k − 1) choices
for our last slot.

This would certainly seem to indicate that there are n!
(n−k)! many

ways to assign cards. However, our situation from before is not
quite the same as the one we have now! In particular: notice
that the order in which we pick our postcards to send to this one
friend does not matter to our friend, as they will receive them all
at once anyways! Therefore, our process above is over-counting
the total number of ways to send out postcards: it would think
that sending card X and Y is a different action to sending card
Y and card X!

To fix this, we need to correct for our over-counting errors above.
Notice that for any given set of k distinct cards, there are k!
different ways to order that set: this is because in ordering a set
of k things, you make k choices for where to place the first element,
k − 1 choices for where to place the 2nd element, and so on / so
forth until you have just 1 choice for the k-th element.

Therefore, if we are looking at the collection of ordered length-
k sequences of cards, each unordered sequence of k cards corre-
sponds to k! elements in this ordered sequence! That is, we have
the following equality:

(unordered ways to pick k cards from n choices) · k! = (ordered ways to pick k cards from n choices)

=
n!

(n− k)!

Therefore, if we want to only count the number of unordered ways
to pick k cards from n choices, we can simply divide both sides of
the above equation by k!, to get

(unordered ways to pick k cards from n choices) = =
n!

k!(n− k)!

This concept — given a set of k things, in how many ways can we
pick m of them, if we don’t care about the order in which we pick
those elements — is an incredibly useful one, and as such leads
itself to the following definition:

Definition. (Unordered choice without repetition.) The
binomial coefficient

(
n
k

)
is the number of ways to choose k things

from n choices, if repeated choices are not allowed and the order
of those choices does not matter.

Observation. By the working above, we can see that
(
n
k

)
=

n!
k!(n−k)! for any natural numbers k, n with k ≤ n. (For k > n,

we have
(
n
k

)
= 0 by the same reasoning as before: we cannot

choose more than n distinct things from a set of n possibilities!)

(0,0)

(2,2)

(0,0)

(2,2)

This observation lets us solve two more of our problems:

Problem. What is the coefficient of x8y7 in (x+ y)15?

Solution. This might not seem like a choice-related problem at
first. To make it a choice problem, though, let’s think about a
simpler case: (x+ y)2!

In particular, notice the following:
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• Every term in (x + y)(x + y) is generated by picking an
element in the first (x+y), picking an element in the second
(x+ y), and then multiplying them together. That is: if we
are FOILing the product of these polynomials together, we
could either

– pick the x from the first and the second,

– the x from the first and the y from the second,

– the y from the first and the x from the second, or

– the y from the first and the second.

This leaves us with x2 + xy + xy + y2, which is correct!

You can do this in general to expand (x + y)n for any n: if you

expand (x + y)n into

n times︷ ︸︸ ︷
(x+ y)(x+ y) . . . (x+ y), then we can cal-

culate the product by just thinking of all of the ways in which
these terms can combine! That is, every term in this product
corresponds to exactly one of the following: either

• pick x from all n of the (x+ y) terms, or

• choose exactly n− 1 of the n different (x+ y) terms to pick
a x from, and choose a y from the other (x+ y), or

• choose exactly n− 2 of the n different (x+ y) terms to pick
a x from, and choose a y from the other two (x+ y)’s, or

• . . .

• choose exactly one of the n different (x+ y) terms to pick a
x from, and choose a y from the other n− 1 (x+ y)’s, or

• choose a y from every term.

Notice that doing this tells us that

(x+ y)n =

(
n

0

)
xn +

(
n

1

)
xn−1y +

(
n

2

)
xn−2y2 + . . .+

(
n

n− 1

)
xyn−1 +

(
n

n

)
yn.

We can simplifythis with summation notation37 to the following:

(x+ y)n =

n∑
i=0

(
n

i

)
xn−iyi

In particular, in (x+ y)15, this tells us that the coefficient of x8y7

in (x+ y)15 is
(

15
7

)
= 6435 . Success!

Problem. A lattice path in the plane R2 is a path joining in-
teger points via steps of length 1 either upward or rightward. For
any two natural numbers a, b ∈ N, how many lattice paths are
there from (0, 0) to (a, b)?

Solution. Notice that any path from (0, 0) to (a, b) will need to
take a+ b steps. Of those a+ b steps, precisely a must be to the
right and the remaining ones must be upward. Therefore, we can
create any such path by just “choosing” a out of our a + b steps
to be the rightward steps! To be precise:

• Let s1, s2, . . . sa+b be a+ b placeholders for the steps we will
take.

• Choose any set R of a of these steps, without any repeats
or caring about the order in which R’s elements are chosen.

37If you haven’t seen this before: writing

n∑
i=1

ai is just shorthand for the

sum a1 + a2 + . . .+ an. For example, 1 + 2 + 3 + . . .+ n =
n∑

i=1

.
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• Turn this into a path by making it so that we step right on
any step si ∈ R, and step upwards if si 6∈ R.

There are
(
a+b
a

)
many ways to choose such a set R, and therefore(

a+b
a

)
many paths from (0, 0) to (a, b) as well. Success!

Notice that if we had instead chosen the set U of moves to go
“up” by, we would have gotten the answer

(
a+b
b

)
to this prob-

lem instead. This might look worrisome (it looks like we got two
different answers!), but is actually expected:

Claim. For any n ≥ k, we have
(
n
k

)
=
(
n

n−k
)
.

Proof. Simply use our formula from above, which says that(
n

n− k

)
=

n!

(n− k)!(n− (n− k))!
=

n!

(n− k)!k!
=

(
n

k

)
.

As a result,
(
a+b
a

)
=
(

a+b
(a+b)−a

)
=
(
a+b
b

)
, as expected.

To illustrate one last variation on the multiplication principle, we
return to our postcard problem:
Problem. Suppose that we are at the shops and want to buy a
bunch of postcards to send out to our friends. The shop sells n
different kinds of postcards, and has tons of each kind. We want
to buy k cards (possibly with repetitions, if there’s a specific card
design we like and want to send to many people.) In how many
ways can we pick out a set of k cards to buy?
It first bears noting that this problem does not fall under the
situations of our earlier problems. In this problem, our choices are
unordered: i.e. we’re just picking out a bundle of cards to buy,
and the order in which they’re bought is irrelevant. Therefore, we
cannot use the “ordered choice with repetitions” observation we
made earlier, as this would massively overcount things (i.e. we’d
count orders of the same cards as different if the cashier rang
things up in a different order, which is silly.)

However, unlike our two “ordered/unordered choice without re-
peats” situations, we can repeat choices! This means that this is
not at all like those situations: in particular, k can be larger than
n and we will still have lots of possibilities here, whereas in in the
“without repeats” situations this was always impossible. So we
need a new method!

To develop this method, think of the n different kinds of postcards
as n “bins.” Here’s a visualization for when n = 5:

card 
type 1

card 
type 2

card 
type 3

card 
type 4

card 
type 5

Picking out k cards to buy, then, can be thought of as pulling a
few cards from the first bin, a few from the second, and so on/so
forth until we’ve pulled out k cards in total. In other words, this
is the same problem as distributing k balls amongst n bins:

card
type 1

card
type 2

card
type 3

card
type 4

card
type 5

To do this task, replace the n bins with n− 1 “dividers” between
our choices. This separates our choices just as well as the bins
did, so this is still the same problem.
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Now, forget the difference between objects and dividers!
That is, take the diagram above and suppose that you cannot
tell the difference between an object and a divider between our
choices.

? ? ? ? ? ? ? ? ? ? ? ? ?

How can we return this back to a way to choose k things from n
choices? Well: take the set of k+ (n− 1) objects, of which k used
to be things and n − 1 were dividers. Now choose n − 1 of them
to be dividers! This returns us back to a way to pick out k things
from n choices.

? ? ? ? ? ? ? ? ? ? ? ? ?

In particular, note that given any set of k + (n− 1) placeholders,
we can turn it into a way to choose k things from n choices with
repetition by performing such a choice! Therefore, there are as
many ways to make such choices as there are ways to choose n−1
things from a set of k + (n− 1) options to be placeholders. This
second choice is unordered and without repetition (we want all of
the placeholders to be different, and don’t care about the order in
which we pick the placeholders: just the elements that are chosen!)
Therefore, we can use our “unordered choice without repetition”
principle to see that there are

(
k+n−1
n−1

)
many ways to do this!

In other words, we have the following observation:

Observation. (Unordered choice with repetition.) The num-
ber of ways to choose k things from n choices, where we do not care
about the order in which we make our choices but allow choices
to be repeated, is

(
k+n−1
n−1

)
.

We can use this to solve another one of our problems:
Problem. How many seven-digit phone numbers exist in which
the digits are all nondecreasing?

Solution. By “nondecreasing” here, we just mean that each digit
is at least as big to the digit to its left; i.e. 122-2559 is a valid
phone number, but 321-1234 would not be.

With this understood, I claim that our problem can be reduced
to an “unordered choice with repetition” task as follows: consider
any way to choose seven numbers from the set of digits {0, 1, . . . 9},
without caring about the order and with repetition allowed.

On one hand, I claim that any such choice can be turned into a
nondecreasing phone number! Just list the digits here in order of
their size; i.e. if you picked three 1’s, a 2, a 3, and two 5’s, write
down 111-2355. This process also clearly generates any such phone
number (just pick its digits!), and so the number of seven-digit
nondecreasing phone numbers is just the number of unordered
ways to choose seven things from the set of digits {0, 1, . . . 9} with
repetition.

By our above formula, there are
(

7+10−1
10−1

)
=
(

16
9

)
= 11440 many

such numbers. Success!

7.2 How to Count: Addition

Our “multiplication principle” is not the only tool we have for
counting things. Consider the following common-sense idea for
how to count the elements in a set:
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Observation. (Summation principle.) Suppose that you have
a set A that you can write as the union of several smaller dis-
joint38 sets A1, . . . An.

Then the number of elements in A is just the summed number
of elements in the Ai sets. If we let |S| denote the number of
elements in a set S, then we can express this in a formula:

|A| = |A1|+ |A2|+ . . .+ |An|.

We can use this to solve our pizza problem from earlier:

Problem. Pizza My Heart is a great pizza place that I loved back
when I was a lecturer in California. Suppose that I went there and
they had the following deal on pizzas: for 13$, they’d sell you a
pizza with any two different vegetable toppings, or any one meat
topping. If there are m meat choices and v vegetable choices, and
for each pizza I also got to choose one of s sauces, how many
different pizzas could I order under this deal?

Solution. Using the summation principle, we can break our piz-
zas into two types: pizzas with one meat topping, or pizzas with
two vegetable toppings.

For the meat pizzas, we have m · s possible pizzas, by the multi-
plication principle (we pick one of m meats and one of s sauces.)

For the vegetable pizzas, we have
(
v
2

)
· s possible pizzas (we pick

two different vegetables out of v vegetable choices, and the order
doesn’t matter in which we choose them; we also choose one of s
sauces.)

Therefore, in total, we have s ·
(
m+

(
v
2

))
possible pizzas!

We can also prove some interesting identities with this principle:

Problem. Demonstrate the following equality:(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

Solution. While it is not particularly obvious, we can do this
with the summation principle!

We do this as follows: take the set {1, . . . n}, and consider all of
the k-element subsets39 of this set. On one hand, there are

(
n
k

)
many such subsets — this is because there are precisely

(
n
k

)
many

ways to pick out k things from a set of n things if we don’t care
about the order in which we pick things, and that is precisely what
we are doing when we are finding k-element subsets.

On the other hand, let’s break our subsets of {1, . . . n} into two
cases:

1. The subsets that contain the element n. How many such
subsets are there? Well: to create any such subset, we have
to pick the element n, and then we have to pick k − 1 more
elements out of a set of n − 1 total possible objects (to fill
in the rest of the set.) But this just means that there are(
n−1
k−1

)
many such sets!

2. The subsets that do not contain the element n. How many
such subsets are there? Well: to create any such subset, we
have to pick k elements out of a set of n − 1 total possible
objects (because we need k things that are not n.) But this
just means that there are

(
n−1
k

)
many such sets!

38Sets are called disjointif they haven no elements in common. For exam-
ple, {2} and {lemur} are disjoint, while {1, α} and {α,lemur} are not disjoint.

39We say that a set A is a subset of a set B, and write A ⊆ B, if every
element of A is an element of B. For example, {1, 2, Batman} is a subset of
{1, 2, 3, 4, 5, Batman, 7}.
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By the rule of sum, because each subset of {1, . . . n} falls into
exactly one of the two cases above, we can conclude that the total
number of k-element-sized subsets of {1, . . . n} is just(

n− 1

k

)
+

(
n− 1

k − 1

)
.

Combining our two observations above gives us that

(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

With these fundamental principles of counting at hand, we now
turn to a pair of more subtle counting-based arguments: the pi-
geonhole principle and the inclusion-exclusion principle.

7.3 The Pigeonhole Principle

Proposition. (Pigeonhole principle): Suppose that kn + 1 pi-
geons are placed into n pigeonholes. Then some hole has at least
k + 1 pigeons in it.

Proof. The most pigeons that can be put into n holes so that no
hole has more than k pigeons is kn; just put k pigeons in each
hole. Therefore, if we have more than kn pigeons, at least one
hole must contain at least k + 1 pigeons.

The applications of this property are where it really shines! We
look at a few examples here:

Claim. Suppose that “friendship” is40 a symmetric relation: i.e.
that whenever a person A is friends with a person B, B is also
friends with A. Also, suppose that you are never friends with
yourself (i.e. that friendship is antireflexive.) Then, in any set S
of greater than two people, there are at least two people with the
same number of friends in S.

Proof. Let |S| = n. Then every person in S has between 0 and
n− 1 friends in S. Also notice that we can never simultaneously
have one person with 0 friends and one person with n− 1 friends
at the same time, because if someone has n− 1 friends in S, they
must be friends with everyone besides themselves.

Therefore, each person has at most n − 1 possible numbers of
friends, and there are n people total: by the pigeonhole principle,
there must be some pair of people whose friendship numbers are
equal.

(This should remind you of problem 1(b) on assignment 3; it’s
basically the same problem!)

Claim. Suppose that p is a prime number, and a is any number
in {1, 2, . . . p − 1}. Then there is some b ∈ {1, 2, . . . p − 1} such
that ab ≡ 1 mod p.

Proof. Look at the p− 1 different products

1 · a, 2 · a, 3 · a, . . . , (p− 1) · a.

Specifically, look at their remainders after division by p.

Because no number in {1, 2, . . . p− 1} contains p as a factor, none
of these products is a multiple of p; therefore, all of these numbers

40Magic!
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are not congruent to 0 mod p, and their remainder on division by
p is thus not equal to 0.

Assume for a contradiction that all of these products are also not
congruent to 1 mod p; i.e. their remainder on division by p is also
not equal to 1.

Because every number has some remainder in {0, 1, 2, . . . p−1} on
division by p, as proven in chapter 2, this means that we have p−1
different products that are distributed across p − 2 different re-
mainders (we originally had p options, but the 0 and 1 possibilities
were eliminated.)

By the pigeonhole principle, some remainder must be repeated!
That is, there are two distinct products ab, ac such that ab and ac
have the same remainder on division by p; that is, ab ≡ ac mod p.

But this means that by definition ab− ac is a multiple of p. b− c
is a difference of numbers from {1, 2, . . . p − 1}; the largest this
difference can be is (p− 1)− 1 = p− 2 and the smallest it can be
is 1 − (p − 1) = −(p − 2), so the only multiple of p possible is if
this is 0 (which it’s not, because we said ab was distinct from ac.)
But a is not a multiple of p as well, because a ∈ {1, 2, . . . p− 1}.
Therefore their product cannot be a multiple of p, and we have a
contradiction to our assumption! That is, there must have been
some b such that ab ≡ 1 mod p, as desired.

Claim. Take a sphere, and draw five different points on the sphere.
Then there is some way to cut the sphere in half such that one
half contains at least four of the points (if we consider points on
the boundary of the hemisphere to count as “in” the sphere.)

Proof. Take any two points on the sphere. Cut the sphere in half
through those two points.

By the pigeonhole principle, at least two of the remaining points
must be on one half or the other half. That half now contains
four points: the two on the boundary that we cut through, plus
the two on that half!

Claim. Take any set of ten two-digit positive integers A. Then A
has two disjoint subsets B, C such that the sum of the elements
in B is equal to the sum of the elements in C.

This claim is maybe a bit abstract, so let’s illustrate it with an
example before proving it properly: suppose that our set A was

{5, 9, 10, 17, 25, 31, 41, 72, 89, 93}

Then if we let B = {5, 10, 17, 25, 72} and C = {9, 31, 89}, we have
that the sum of elements in B is 5 + 10 + 17 + 25 + 72 = 129 and
the sum of elements in C is 9 + 31 + 89 = 129, which are equal as
desired!

This is not a proof, however; this is just an example. Let’s prove
that this happens for every set A:

Proof. Notice that there are 210 = 1024 subsets of A. This is
because we can think of making a subset of A as deciding for
each element in A whether to include it or not; this gives us 2
possibilities for each element, and thus 2n total ways to make
such a choice for a n-element set in general.

Now, notice that the largest sum that any subset B of A can be
is if B = A = {90, 91, 92, 93, . . . 99}, in which case the sum41 is

41A useful identity that we just used here is the fact that 1 + 2 + . . .+ n =
n(n+1)

2
. This is worth knowing!
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90 + . . . + 99 = 10 · 90 + (1 + 2 + . . . + 9) = 900 + 9·10
2 = 945.

Similarly, the smallest sum possible for any subset B is if B = ∅,
in which case the sum is 0.

Think of the numbers 0, 1, . . . 945 as our pigeonholes, and the sub-
sets of A as our pigeons. Because there are 1024 pigeons and 946
pigeonholes, there must be at least two sets A,B in the same pi-
geonhole; that is, there are two different sets A,B such that their
sums are the same.

These sets A,B may have some overlap, however! To fix that,
though, just delete the elements they have in common: i.e. replace
A and B with A \ (A∩B) and B \ (A∩B). Because this removes
the same elements from each set, it decreases the sum of each set
by the same amount, and does not change the property that the
sum of the elements in each of these sets are equal.

7.4 The Inclusion-Exclusion Principle

We motivate our last counting principle by considering the last
problem from our introduction:

Problem. How many positive integers between 1 and 10,000 are
not divisible by 2, 3 or 5?

Solution. Directly solving this by writing down all of the num-
bers from 1 to 10,000 sounds like. . . not a great plan. Instead, let’s
try a more indirect approach! That is: notice the following:

• It is easy to count all of the integers between 1 and 10,000
that are multiples of 2; these are just the even numbers, and
there are 10000

2 = 5000 of these.

• Similarly, it is easy to count all of the integers that are
multiples of 3; there42 are

⌊
10000

3

⌋
= 3333 of these integers.

• As well, there are also 10000
5 = 2000 integers that are multi-

ples of 5.

At first, it’s tempting to say that we can just count all of the
integers between 1 and 10,000 by taking the 10000 possible values
and subtracting the count of the multiples of 2, 3 and 5; this would
give us 10000− 5000− 3333− 2000 = −333 many such numbers.

. . . um. That’s not right. What went wrong?

Well: the main error we made here is that we overcounted our
numbers! That is: when we subtracted off the multiples of 2
and the multiples of 3, the multiples of 6 were counted twice.
Therefore, we subtracted these numbers twice (and similarly for
the multiples of 10 and 15,) which is why we got a ridiculous
answer.

To correct for this, we need to fix our mistake! That seems easy
enough to do: we just need to undo the double-subtraction of
the multiples of 6, 10 and 15 by adding these back in! There are⌊

10000
6

⌋
= 1666,

⌊
10000

10

⌋
= 1000 and

⌊
10000

15

⌋
= 666 many such

values, which suggests an answer of 10000− 5000− 3333− 2000 +
1666 + 1000 + 666 = 2999 many such values.

. . . except if you calculate this on a computer, you’ll get 2666
many such numbers. What went wrong?

Well: when we added back in these multiples of 6, 10 and 15,
numbers that were in the overlap of these sets (namely, multiples
of 30) were added back in too many times! To be precise, any
number that was a multiple of 30 has gone through the following
process:

42Note: we write bxc to denote the “round down” function: i.e. bπc =
3, b4c = 4 and b−0.9c = −1.
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• We subtracted it out three times, as it was a multiple of 2,
3 and also 5 individually,

• We then added it back in three times, as it was a multiple
of 6, 10 and 15 individually.

To get the right count, we need to subtract this back out again!
That is, we need to subtract off

⌊
10000

30

⌋
= 333 to get to the right

answer. Doing this to our second mistaken answer 2999 gives us
the correct answer of 2666, as desired.

The idea here, roughly speaking, was the following:

• We wanted to calculate the size of X \ (A1∪A2∪ . . . Ak), for
some set X and subsets A1, A2 . . . Ak. Here, in particular,
we wanted to count all of the numbers from 1 to 10,000 (our
set X) that aren’t multiples of 2 (our set A1), 3 (our set A2)
or 5 (our set A3.)

• Doing this directly was hard!

• Instead, we calculated the size of the sets A1, A2, A3, A1 ∩
A2, A1 ∩A3 and A2 ∩A3.

• Then, we used the following43 observation:

|X \ (A1 ∪A2 ∪A3)| = |X| − |A1| − |A2| − |A3|+ |A1 ∩A2|+ |A1 ∩A3|+ |A2 ∩A3| − |A1 ∩A2 ∩A3| .

While this formula might look scary, if you represent your
sets with a Venn diagram it should make things clearer.
Consider the drawing below, that depicts a set X containing
three sets A1, A2, A3 with a Venn diagram:

A1 A2

A3

X

If we wanted to count all of the elements in X that aren’t
in either of the sets A1, A2, A3, the above process says we’d
do this as follows:

– First, count all of the elements in X.
– Now, count all of the elements in each of A1, A2, A3,

and subtract those counts from the number we counted
earlier.

– Notice that when you did this, the elements in A1 ∩
A2, A1 ∩A3 and A2 ∩A3 were deleted “twice:” that is,
when we deleted the blue elements and then deleted the
yellow elements, the blue-yellow elements were removed
twice (and similarly for the other colors!)

– To fix this, we need to add back in another copy of
these deleted elements. That is: count the number of
elements in each of A1 ∩A2, A1 ∩A3 and A2 ∩A3, and
add those counts back into our sum.

43Given a set X, we use the notation |X| to denote the number of elements
in X. For example, |{1, 4, 5}| = 3.
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– Almost done! The only issue here is that the elements
in A1 ∩ A2 ∩ A3 (the rainbow elements in the middle)
have now been added back in “too many times:” we
counted them four times (once when we counted X,
and once each when we counted A1 ∩ A2, A1 ∩ A3 and
A2 ∩A3), and only deleted them three times (when we
subtracted |A1|, |A2|, |A3|.)
We want to have these elements not counted at all (we
want to count X \ (A1 ∪A2 ∪A3)), so we need to take
away one more copy of these elements: namely |A1 ∩
A2 ∩A3|!

This fact let us calculate the answer to our problem!

In general, this is called the inclusion-exclusion principle:

Claim. Given a finite set X, along with n subsets A1, A2, . . . An
of X, we have

∣∣∣∣∣X \
(

n⋃
k=1

Ak

)∣∣∣∣∣ = |X|+
n∑
k=1

(−1)k ·
∑

all unordered subsets
{i1,i2,...ik}

of size k of {1,...n}

|Ai1 ∩ . . . ∩Aik |

 .

First, notice that this somewhat scary-looking sum is indeed the
same thing as our result from earlier: if n = 3, the sum at right
is just

|X|+ (−1) (|A1|+ |A2|+ |A3|) + (−1)2 (|A1 ∩A2|+ |A1 ∩A3|+ |A2 ∩A3|) + (−1)3 (|A1 ∩A2 ∩A3|)

Proof. To see that this counting process actually works, take any
x ∈ X, and consider cases:

1. x is not in
⋃n
k=1Ak. In this case, then x is “counted” once

in our big sum: it contributes 1 to the |X| count, and never
shows up in any of the other terms, as it is not in any of
A,B,C or their intersections.

2. x is in l of the Ai sets: to be specific, let’s say that x ∈
Ai1 , . . . Ail for some indices i1 < . . . < il, and that x is not
in any of the other Aj sets.

In this setting, then x shows up in the following:

• x contributes a 1 to the |X| term’s size.

• x is in l of the Ai terms, and thus contributes (−1) · l
from the

∑
1≤i1≤n

|Ai1 | terms.

• x is in
(
l
2

)
of the Ai∩Aj terms, because it’s in l sets total

and there are
(
l
2

)
many ways to pick out pairs of these

sets to intersect. Therefore, it contributes (+1) ·
(
l
2

)
from the

∑
1≤i1<i2≤n

|Ai1 ∩Ai2 | terms.

• Similarly, x is in
(
l
3

)
of the Ai∩Aj ∩Ak terms, because

it’s in l sets total and there are
(
l
3

)
many ways to pick

out triples of these sets to intersect. Therefore, it con-

tributes (−1)·
(
l
3

)
from the

∑
1≤i1<i2<i3≤n

|Ai1∩Ai2∩Ai3 |

terms.

• . . .

• In general, for any k ≤ l, x is in
(
l
k

)
of the Ai1 ∩ . . . ∩

Aik terms, as it is in l sets total and there are
(
l
k

)
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many ways to pick out k sets from the l sets in total.
Therefore, in total, it contributes (−1)k ·

(
l
k

)
from the

(−1)k ·
∑

1≤i1<...<ik≤n

|Ai1 ∩ . . . ∩Aik | terms.

So, in total, x contributes

1− l +

(
l

2

)
−
(
l

3

)
+ . . .+ (−1)k

(
l

k

)
=

l∑
k=0

(
l

k

)
(−1)k

to the right-hand side.

If we remember the binomial theorem, which says that (x+

y)l =

l∑
k=0

(
l

k

)
xkyl−k, and plug in x = −1, y = 1, we get

(−1 + 1)l =

l∑
k=0

(
l

k

)
(−1)k.

But (−1 + 1)l = 0; so we actually have that x contributes 0
to the sum!

So, our sum adds up a 1 for every x ∈ X \ (
⋃n
k=1Ak) and a 0 for

every other x; in other words, the right hand side gives us the size
of X \ (

⋃n
k=1Ak), as claimed!

Roughly speaking, our strategy here was the following:

• To find the size of the union of a bunch of sets, we first added
up the size of all of these sets; this overcounts, however,
because elements in more than one set get counted multiple
times!

• To correct for this overcount, we then “fix” things by sub-
tracting off the size of all of our pairwise intersections. But
this results in an undercount, as elements in more than two
sets get counted by these pairwise intersections too many
times!

• To correct for this undercount, we then add in the size of
all of our triple-intersections; but this too results in an over-
count . . .

• But if we keep doing this, at the end we will have (magically)
counted everything correctly!

This idea is an incredibly useful one — to get an exact count, we
can just use “at least” counts and repeatedly add and subtract off
errors to get the right result at the end!

We use this to solve one last problem:
Problem. Suppose that you’re at a graduation with n people,
each of which has their own cap. Suppose that everyone throws
their cap in the air when they graduate, and that the caps are
randomly handed back to everyone.

What is the probability that no one gets their own cap back?

Solution. There are n people and n caps, and therefore n! ways
for people to be assigned to caps: this is choosing n things from
n choices, where repeats aren’t allowed but we care about order.

So, if we can just count all of the ways in which everyone can get
a cap back that is not their own, we’ll have an answer here!

To do this, let Ai denote the set of all ways to match people to
caps such that person i gets their own cap back. If we do this,
then we can make the following observations:
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• n!−|A1∪A2∪ . . . An| is what we want to count: we want all
of the ways to assign people to caps minus all of the ways
in which someone can get their own cap back.

• Ai1 ∩ Ai2 ∩ . . . Aik is just the number of permutations that
makes sure that people i1, . . . ik all get their own cap back.

• |Ai1 ∩ Ai2 ∩ . . . Aik | is just (n − k)!; we just assign people
i1, . . . ik their own cap, and choose any way to assign the
remaining n− k people the remaining n− k caps.

• There are
(
n
k

)
ways to choose unordered value i1, . . . ik from

{1, 2, . . . n}.
Therefore, the inclusion-exclusion formula says that there are

n!−
n∑
i=1

|Ai|+
∑

all unordered subsets
{i1,i2} of {1,...n}

|Ai1 ∩Ai2 |+ . . .+ |A1 ∩ . . . ∩An|

=n!−
(
n

1

)
(n− 1)! +

(
n

2

)
(n− 2)! + . . .+ (−1)n

(
n

n

)
(n− n)!

=n!− n!

1!(n− 1)!
(n− 1)! +

n!

2!(n− 2)!
(n− 2)! + . . .+ (−1)n

n!

n!0!
0!

=n!

(
1− 1

1!
+

1

2!
− 1

3!
+ . . .+ (−1)n

1

n!

)
=n!

n∑
k=0

(−1)k

k!

many ways to hand back caps without anyone getting their own
cap back.

Expressed as a ratio, this tells us that the probability of choos-
ing such a way is just the above quantity divided by n!, i.e.
n∑
k=0

(−1)k

k!
.

People with some calculus knowledge will recognize that

∞∑
k=0

(x)k

k!
=

ex, and therefore that for large values of n this probability is just
1
e . Neat!
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Compsci 225 Lecturer: Padraic Bartlett

Chapter 8: Automata
Week 11 UoA 2018

In this section, we combine the skills we developed on graph theory
and proofs here to study a simple form of computation: namely,
that of a deterministic finite-state automata!

To do this, we first start off by defining some preliminary notation:

8.1 Strings, Languages, and Automata

Definition. A alphabet is just any set. Alphabets usually con-
sist of single characters, like {a} or {a, b, c} or {0, 1, . . . 9}, and are
usually denoted by the symbol Σ; for example, a common phrase
you’ll see when working with automata is “Let σ = {a, b} be an
alphabet.”

Given an alphabet Σ, a word or string of length n over Σ is
any ordered list of n symbols from σ. For example, 011 and 101
are both length-3 strings over the alphabet {0, 1}, aaaa is the
only length-4 string over the alphabet {a}, and ababab, abcabc are
two length-6 strings over the alphabet {a, b, c}. Words are often
denoted by writing lower-case letters: i.e. v, u, w are common
variables used for words, much like how x, y are common variables
used for real numbers.

Often, it is useful to be able to discuss the length-0 string that
contains no symbols. We denote this string by writing λ!

Given this notion of alphabets and words, we say that the set of
all finite length words Σ∗ is the collection of all finite-length
words in the alphabet Σ: i.e.

Σ∗ = {a0a1 . . . an−1 | n ∈ N, a0 . . . an−1 ∈ Σ}

Finally, we define a language to be any subset of Σ∗ itself. In
other words, a language is just a collection of things we consider
to be words (which should make intuitive sense!) For example,
the following things are languages over the alphabet {a, b}:

• {a, b, ab, aba}

• {
n times︷ ︸︸ ︷

abab . . . ab | n ∈ N}

• Σ∗

• {w | w ∈ Σ∗, w contains a prime number of a′s}

Languages are often denoted with capital letters, like L.

Given an alphabet Σ and two strings v, w ∈ Σ∗ we can define a
pair of operations on how to compare and combine v, w:

• Given two strings v, w, we can define the concatentation
of v and w as the string that is formed by first writing down
v and then w in that order. For example, the concatentation
of 01010 and 111 is just 01010111, and the concatentation
of aaa and λ, the empty string, is aaa.

• Given two strings v, w, we say that v is a substring44 of w
if we can delete some symbols from the start and end of w
to get the string v. For example, the following four strings
are each substrings of abbaaaa:

44Good exercise: show that “is a substring of” is a poset relation on any
language!
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ba abba λ abbaaaa

Notice that the empty string λ is a substring of any string
w; just delete all of w, and you’ll have the empty string left
over!

Strings and languages, in of theirselves, are not particularly in-
teresting. However, the notion of an automaton is where things
get more compelling:

Definition. Take an alphabet Σ. A deterministic finite-state
automaton over the alphabet Σ consists of four things:

• A finite set of states S.

• A transition function T : S × Σ → S. Recall that this
notation is just a fancy way of saying that the transition
function T takes in as its inputs a state q ∈ S and a letter
σ ∈ Σ, and uses this to output another state q′ ∈ S.

• A subset F ⊆ S of accepting states.

• An element q0 ∈ S, that we think of as the initial state.

Much like how graphs had a very abstract definition that was made
significantly better by visualizing things, deterministic finite-state
automata can be made much clearer with diagrams! In particu-
lar, we can visualize any deterministic finite-state automaton as
a directed multigraph with edge labels from Σ as follows:

• First, make a vertex for every state in S.

• Now, draw an edge from vertex q to vertex q′ labeled with
the letter σ if T (q, σ) = q′. This lets us easily visualize the
function T : to see where T sends any state-letter pair (q, σ),
just find the vertex corresponding to state q and look for the
edge leaving q labeled σ!

Note that this edge can be a self-loop if T (q, σ) = q.

• Finally, label the starting vertex as “start” and the accepting
vertices as “accepting.” Many people indicate the starting
vertex by drawing a partial edge pointing to the starting
vertex, and by shading in the accepting vertices.

Notice that in any such visualization, every vertex has precisely
|Σ| edges leaving it: one for every element of Σ. This is because T
is a function, and so must be defined for every state q and letter
σ!

We give an example of an automaton and its associated visualiza-
tion below:

q0

q3 q2

q1

a
b

Example. Here’s an automaton M over the language {a, b}:

• States: we have four states, q0, q1, q2 and q3. We set q0 to
be the initial state, and q0, q2 as its accepting states.

• We define our transition function T by cases:

– T (q0, a) = T (q0, b) = q1.

– T (q1, a) = q3, T (q1, b) = q2.

– T (q2, a) = T (q2, b) = q2.

– T (q3, a) = T (q3, b) = q3.

Just like with graphs, we will typically just give the visualization
for an automaton instead of its formal definition, as the picture
at the right is typically much easier to understand!

Given an automaton, the main thing we will want to do is run it
on a string w! We do this as follows:
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Definition. Given an automaton M over an alphabet Σ and a
string w = σ0σ1 . . . σn−1 in Σ∗, we can run M on w by doing the
following:

• Start at q0, the initial state.

• Travel from q0 to whichever state is connected to q0 by an
edge labeled σ0.

• Then, travel from that state by using whichever edge is la-
beled σ1.

• Then, travel from that state by using whichever edge is la-
beled σ2.

• . . . repeat this process, until you’ve ran out of letters in w!

q0

q3 q2

q1

a
bfirst edge

second
edge

third
edge

fourth
edge

For example, if we ran our automaton M from before on the word
abba, we’d do the following:

• We’d start at q0.

• Then, our rules say we’d take the a-edge to go to q1.

• Then our rules would tell us to take the b-edge to go to q2.

• From here, our rules will tell us to return to q2 no matter
whether we take the a or b edges (i.e. we’re stuck!)

We say that an automaton M accepts a word w if when we run
M on w, we end on one of our accepting states; otherwise, we say
that M rejects w.

Given an automaton M , a common problem that we’ll try to solve
is the following: what is the language of all strings that M will
accept? In other words, what’s the collection of all inputs to our
automaton that will end in an accepting state?

If you think of our automaton as modeling a very simple notion
of modelling what a computer program can do (i.e. it takes in
inputs, uses those inputs to shuffle between states, and uses this to
output either “accept” or “reject”) this is a very natural question
to ask. In computer programming, we often want to determine
the behavior of a program: i.e we’ll want to figure out if a given
program can recognize all strings that look like valid ID numbers,
or all numbers that are primes, or all orders that can be fulfilled
through the Auckland branch of your company.

So, let’s try to answer this problem for a few simple automata!

Problem. Let M be the automaton we defined before. What is
the language of all strings that M accepts?

Solution. First off, we note that q0 is an accepting state, so we
accept λ, the empty string.

Secondly, we can notice that if we run M on any string w with at
least one letter, after reading off our first character we’re at q1, a
nonaccepting state. So M does not accept either of the one-letter
words a or b.

Now, notice that if our second letter is a, we go to q3. q3 is
something that we call an “absorbing” state: i.e. all of the edges
connected to q3 are self-loops, and so once we go to this vertex we
stay here forever. Therefore, any string whose second letter is a
will go to q3 and stay there! Because q3 is a nonaccepting state,
this means that we do not accept any string whose second letter
is an a.

Finally, notice that if our second letter is a b, we go to q2. This
is another “absorbing” state, but it is also an accepting state:
therefore we can conclude that we accept any string whose second
letter is a b.
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In conclusion, then, we have that M accepts the language L of all
strings that are either empty or contain at least two letters, with
a b as their second letter. Success!

q0

q2 q1

0 1 2

Problem. Let M be the automaton over the language {0, 1, 2}
defined at right. Completely describe the language of all strings
accepted by M .

Solution. Notice that the letter 0 never changes the state we’re
in; on every vertex, the edge labeled 0 returns to itself. So we can
safely “ignore” those symbols;’ that is, if we take any word w and
delete all of its 0 letters, this won’t change the behavior of our
automaton.

As well, notice that the symbols 1 and 2 “undo” each other; that is,
every edge labeled 1 going in one direction is paired with an edge
labeled 2 going in the other direction. Therefore, if we ever have
a 1 followed by a 2, or vice-versa, these symbols will “cancel out;”
in other words, if we take any word w and one-by-one delete “12”
pairs, and then delete “21” pairs, the behavior of our automaton
will still not change.

As a result, we can reduce any word to just a string of 1’s or a
string of 2’s. Finally, notice that in our automaton, repeating 1
three times just returns us to where we start, because this forms
a cycle; similarly, repeating 2 three times does the same thing.
Therefore, we can just delete any triple 1’s or triple 2’s and still
not change our automaton’s behavior!

This leaves us with just a handful of options: after the reductions
given above, we must be one of {λ, 1, 2, 11, 22}. Checking by hand
will show you that we accept precisely the string 1 and 22 from
that list, and reject the others. So, we accept the language of all
strings that can be reduced via the above process to just a 1 or
two 2’s!

This is certainly an acceptable answer! However, it is worth not-
ing that we can find a shorter description of our language if we
examine our reductions. Notice that our reductions can be collec-
tively described as “if a collection of symbols in your string sum
to 3, get rid of them.” Therefore, at the end, we’ve reduced our
string to just its sum modulo 3! From looking at the diagram, we
accept precisely those strings whose sum is 1 modulo 3, and reject
all others. This is a nice description of our language to have!

q0

q3 q2

q1

a
b

Not every automaton accepts such a clean description of its ac-
cepting states! Consider the following automaton at right, gener-
ated by you all in class on Friday. What strings does this automata
accept?

Solution. This is a lot messier than our earlier automata. I claim
that it’s probably easier to solve this problem by describing all
strings that our automaton does not accept. To do so, let’s con-
sider a number of smaller problems:

• Suppose that we started at q1, and chose to ignore the q3

state entirely (i.e. we pretend it’s been deleted.) What kinds
of strings would let us return to q1?

Well, by looking at our automaton, we can see that the
following strings completely describe all of the ways to stay
at q1:

1. We have any string of a’s of any length:

n a′s︷ ︸︸ ︷
aaa . . . a, for

n ≥ 0.

2. We have the above string followed by a bb?, where ?
denotes a wildcard representing any one character (i.e.
either a or b.)
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3. We have any number of strings of the type listed in (2)
repeated after each other.

Call such words γ-words, for shorthand.

• Now, let’s consider all of the ways to start at q1 and stay
at q1 if we’re allowed to also consider the q3 state! In this
world, we’ve got the following possibilities:

1. We still have the γ-words from before.

2. We also have any γ-word followed by a b

m a′s︷ ︸︸ ︷
aaa . . . a b,

where m is any integer that’s at least 1, as that’s the
only path that uses the q3 state once.

3. We have any number of strings of the type listed in (2)
repeated after each other.

Call such words δ-words, again for shorthand.

• Now, consider all ways of starting at q0 and ending at q1!
Because any single-character word ? goes from q0 to q1, this
is just the collection of all words of the form ?wδ, where wδ
denotes an arbitrary δ-word as defined above.

• Now, consider all ways of starting at q0 and ending at q2;
this is just any word of the form ?wδb.

This completely characterizes all of the strings we do not accept!
That is: let Σ∗ denotes all of the possible finite strings on the
alphabet {a, b}, and let D = {v ∈ Σ∗ | v = ?wδ or v = ?wδb, for
some δ-word wδ}.
Then our automata accepts precisely all words of the form Σ∗ \D.

Not the prettiest solution, but that’s OK! Not every problem has
a pretty solution. The point is that it is a solution, and we found
it by reasoning our way through our automaton’s behavior.

Another common kind of question we’ll encounter is trying to
“reverse” this process: that is, given some language L, we’ll want
to design an automaton M that accepts precisely L. This can
be a little tricky to do in practice, but we can describe a rough
framework that will usually get the job done.

To do this, we first introduce a useful definition:

Definition. We say that an automaton M cannot distinguish
between two strings w1, w2 if when M is ran on the string w1, it
winds up in the same state as when it runs on the string w2.

For example, our second automaton could not distinguish between
strings whose sums were the same modulo 3; any string whose
sum was 0 modulo 3 wound up at q0, any string whose sum was
1 modulo 3 wound up at q1, and any string whose sum was 2
modulo 3 wound up at q2.

Conversely, our first automaton could distinguish between the
empty string and all other strings; this is because after we read
our first symbol we left q0, and no edges let us return to q0.

With this definition at hand, here’s a strategy for designing an
automaton to recognize a language L:

1. Start by drawing a single initial vertex q0.

2. Let a be the first letter in the alphabet for our language L.
Consider the following question: does our language L “care”
about whether a word starts with a? That is:

• The language {aba, aaa} definitely cares if a word starts
with a; it can distinguish between the words aba (which
it accepts) and ba (which it rejects.)
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• Similarly, the language {
n pairs︷ ︸︸ ︷

ababab . . . ab | n ∈ N} cares
if a word starts with the letter a, as it can tell the dif-
ference between words like ab, abab, ababab, . . . (which
it accepts) and words like b, ba, bbb, . . . (all of which it
rejects.

• However, the language {w ∈ Σ∗ | w contains exactly one b}
does not care about whether a word starts with a or
not! All it cares about is whether the word has a b in
it or not.

If our language cares about whether a word starts with a or
not, we will need to build an automata that can distinguish
λ from a. If so, we will need to have an edge leaving q0

to some new state; create such a state and edge. If not,
however, then our automata does not need to create a new
state; add a self-loop from q0 to itself labeled a, because we
want a machine M that cannot distinguish between λ and
a.

3. Do this for every letter in our alphabet! This completes all
of the edges that we need to draw leaving q0.

4. Go on to any one of the new states we’ve made; call it q1.
For this state and for any letter σ in our alphabet, consider
all of the possible ways to connect q1 to any other state q2

by an edge labeled σ.

For each such way of making a connection, we are in essence
telling our automaton that any word that leads us to q1,
followed by a σ, should be indistinguishable from any word
that leaves us at q2.

If this is ever true, create such an edge! However, if it is
never true and our language demands that we can distin-
guish between a q1 word followed by a σ and all other words
that lead us to other vertices, create a new state and connect
q1 to that state by a σ edge.

5. Repeat step (4) until q1 now has edges leaving it for every
letter in our alphabet.

6. Now, repeat steps (4+5) until we are out of new states! This
leaves us with an automaton M that distinguishes precisely
between the words that L cares about; if we simply mark all
of the states in M with “accepting” when the corresponding
words are in L, we’re done!

This is pretty wordy for a relatively straightforward process, so
we give a few examples here to illustrate how this goes in practice:

Problem. Let L be the language over the alphabet {a} consisting
precisely of the strings {a, aaa}. What is an automaton whose set
of accepting strings is precisely L?

Solution. At first, we draw our initial state:

q0

Our language cares about whether a word starts with a, as it can
tell the difference between a and λ. So we add a new state:

q1q0

a
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Our language also cares about the difference between a (which it
accepts) and aa (which it rejects,) so we do not add a self-loop
from a to itself. We also do not add a edge back to q0, as this would
tell us that we think that λ and aa are indistinguishable (and
thereby think that aaa and aaaaa are indistinguishable, which is
wrong.) So we add an edge to a new state:

q2q1q0

a

Once again, we cannot add an edge back to any of our existing
states, as this would create a loop and likely force us to accept
infinitely many words, when we want just the words a and aaa!
So we make another new state:

q3q2q1q0

a

Again, we cannot add an edge back to any earlier states as this
would tell us that aaa (which is the longest string we accept) is
equivalent to some earlier string, and thereby generate even longer
/ infinitely many strings that we accept. So we add one last state:

q4q3q2q1q0

a

From this state, we can safely add a self-loop: our language does
not care about the number of a’s in a word once they exceed 3, as
we reject all of these words. Shading in q1 and q3 to indicate that
they’re the states we accept (as we accept precisely the words a,
aaa) then finishes our construction:

q4q3q2q1q0

a

Notice that there are multiple different automata that can gen-
erate the same language: for instance, the automaton below will
also accept precisely {a, aaa}!

q4q3q2q1q0 q5

a

This is because it is functionally the same as our automaton as
before, except we’ve just made it take a bit longer to get to the
“absorbing state” self-loop.

To illustrate this process further, we calculate one last example:

Problem. Let L be the language over the alphabet {a, b} con-
sisting precisely of the strings

{w | w contains an even number of a′s and exactly one b}.

What is an automaton whose set of accepting strings is precisely
L?
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Solution. While the case-by-case process would work here as
well, let’s be a bit more clever this time!

Specifically: notice that something like

q0 q1

a

q0

q1

a
b

q2

is going to be great for detecting whether we have an even number
of a’s in it, as it just bounces back and forth, landing on the gray
vertex for any even number of a’s.

Similarly, we can borrow an idea from the automaton we designed
earlier and notice that something like the automata at right should
be great at detecting whether or not we have exactly one b: the
red self-loops mean that we ignore a’s, while the blue edges ensure
that we only accept a word with one b and reject any with none
or more than one.

With some cleverness, we can “combine” these into a single au-
tomata: behold!

q3q2

q4

a
bq0 q1

This automata clearly rejects any word with no b’s (as we never
get to the middle level) or with more than one b (as we are sent to
the bottom level, which is an absorbing state.) As well, it keeps
track of whether we’ve seen an even or odd number of a’s so far,
and only accepts strings with an even number. Success!
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Compsci 225 Lecturer: Padraic Bartlett

Chapter 9: Codes
Week 12 UoA 2018

To open our class, we’re going to study the following problem:

9.1 A Motivational Example

Problem. Suppose that you are the Voyager 1 probe. You are
currently on the outer limits of the solar system, and about to
leave the solar system forever! Consequently, you want to call your
family to say goodbye. However, you are currently separated from
your parents by the vast interstellar void of SPAAAAAAAAAACE.

SPAAAAACE

The vast interstellar void of space has an annoying habit of oc-
casionally containing stray electromagnetic waves that interfere
with your communications back home; when you send a signal
back home (in binary, naturally), occasionally one of your 1’s will
be switched into a 0, or vice-versa. Assume that no more than
one out of three consecutive bits in any message you send will be
scrambled.

How can you call home?

One solution to this problem you might come up with is to simply
“build redundancy” into the signals you send home, by sending
(say) six 1’s every time you went to send a 1, and six 0’s every
time you went to send a 0. For example, to send the message
“0101,” you’d send

000000 111111 000000 111111.

Then, even if some of the bits are flipped, your parents back on
earth could still decode your message. In particular, if at most
one bit out of any consecutive three is flipped, each of your all-0’s
blocks will have at most two 1’s in them after errors are intro-
duced, while each of your all-1’s blocks will have at most two 0’s
in them after errors. In either case, we would never confuse one
of these blocks with the other: if your parents received the signal

010010 001111 100001 101011,

they could “correct” the errors above to get the signal

000000 111111 000000 111111,

because we’re assuming that there’s at most two errors in each
block! This means that they’ve successfully received the signal
0101 that you sent back home.

This code can correct for the presence of one error out of any three
consecutive blocks, but no better. That is, if we could have more
than two errors in a block of six, we might have three errors in a
string of six: in this case it would be impossibe to tell what our
string was intended to be. For example, the string 000111 could
have resulted from three errors on the signal 000000, or three er-
rors on the signal 111111. The cost for this “error-correction”
ability is that we have to send 6k bits whenever we want to trans-
mit k bits of information.

Can we do better? In specific, can we make a code that is more
efficient (i.e. needs less bits to transmit the same information,) or
can correct for more errors? With a little thought, it’s easy to
improve our code above: if we instead simply replace each 0 with
just 000 and each 1 with 111, our code can still correct for the
presence of at most one error in any three consecutive blocks (for
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example, 101 is unambiguously the result of one error to 111,) and
now needs to send just 3k bits to transmit k bits of information.

There are more interesting codes than just these repetition codes,
though! Consider, for example, the codeword table at right.

word signal to transmit
000 000000
100 100011
010 010101
001 001110
011 011011
101 101101
110 110110
111 111000

In this code, we encode messages by breaking them into groups
of three, and then replacing each string of three with the corre-
sponding group of six. For example, the message “010 101 111”
would become

010101 101101 111000

In this code, every word in the table above differs from any other
word in at least three spots (check this!) Therefore, if we have at
most 1 error in any six consecutive bits, we would never confuse
a word here with any other word: changing at most one bit in
any block of six would still make it completely unambiguous what
word we started with.

Therefore, if we sent the string that we described above, and peo-
ple on Earth received

010111 101111 111000,

they would look through our codeword table for what words these
strings of six could possibly be, if at most one error in every six
consecutive bits could occur.

The first signal 010111 isn’t in our table, so we can’t immediately
tell what 010111 was supposed to mean. However, 010111 differs
from each of the words {000000, 100011, 001110, 011011, 101101, 110110, 111000}
in at least two spots: so if only one error could have crept in,
010111 can’t be any of these strings! So the only string it could
be is the one that differs from it in at most one place: 010101.

Similarly, we can look at 101111; this again isn’t in our table, but
we can look through the table and see that there’s only one word
that differs from it in at most one place: 101101. So that must
have been what was originally sent!

Finally, 111000 is in our table, so we don’t have to correct anything
here. So, our corrected mesage is

010101 101101 111000.

We can translate this message back to “010 101 111,” which is the
message we sent.

This code can correct for at most one error in any six consecutive
bits (worse than our earlier code,) but does so much more effi-
ciently: it only needs to send 2k bits to transmit a signal with k
bits of information in it.

So: suppose we know ahead of time the maximum number of
errors in any consecutive string of symbols. What is the most
efficient code we can make to transmit our signals?

At this time, it makes sense to try to formalize these notions of
“maximum number of errors” and “efficiency.” Here are a series of
definitions, that formalize the words and ideas we’ve been playing
with in this talk:

9.2 Codes: Definitions and Ideas

Definition. A q-ary word of length n is any string of n num-
bers, each one of which is an element of {0, 1, 2 . . . q − 1}. We
denote the collection of all such words by writing (Zq)n.

For instance, 011101 is a binary string of length 6, and 123 is a
4-ary string of length 3.

Definition. A q-ary block code C of length n is a set C of
words of length n, written in base q. In other words, it is any
subset C of (Zq)n.
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Example. The “repeat three times” code we described earlier is a
2-ary code of length 3, consisting of the two elements {(000), (111)}.
We used it to encode a language with two symbols, specifically 0
and 1.

The second code we made is a 2-ary code of length 6, consisting
of the 8 elements we wrote down in our table.

Definition. Given a q-ary code C of length n, we define its in-
formation rate as the quantity

logq(# of elements in C)

n

This, roughly speaking, captures the idea of how “efficient” a code
is.

Example. The “repeat three times” code we described earlier
contains two codewords of length 3; therefore, its information rate

is log2(2)
3 = 1

3 . This captures the idea that this code needed to

transmit three bits to send any one bit of information.

Similarly, the second code we made contains 8 codewords of length

six, and therefore has information rate log2(8)
6 = 3

6 = 1
2 . Again,

this captures the idea that this code needed to transmit two bits
in order to send any one bit of information.

Definition. The Hamming distance dH(x,y) between any two
q-ary strings of length n is simply the number of places where these
two elements disagree.

Given a code C, we say that the minimum distance of C, d(C), is
the smallest possible value of dH(x,y) taken over all distinct x,y
within the code. If d(C) ≥ k, we will call such a code a distance-k
code.

Example. The Hamming distance between the two words

12213, 13211

is 2, because they disagree in precisely two places. Similarly, the
Hamming distance between the two words

TOMATO,POTATO

is 2, because these two words again disagree in precisely two
places.

The “repeat three times” code from earlier has minimum distance
3, because the Hamming distance between 000 and 111 is 3.

Similarly, the second code we described from earlier has minimum
distance 3, because every two words in our list disagreed in at least
3 places.

The following theorem explains why we care about this concept
of distance:
Theorem. A code C can detect up to s errors in any received
codeword as long as d(C) ≥ s+ 1. Similarly, a code C can correct
up to t errors in any received codeword to the correct codeword
as long as d(C) ≥ 2t+ 1.

Proof. If d(C) ≥ s + 1, then making s changes to any codeword
cannot change it into any other codeword, as every pair of code-
words differ in at least s+1 places. Therefore, our code will detect
an error as long as at most s changes occur in any codeword.

Similarly, if d(C) ≥ 2t+1, then changing t entries in any codeword
still means that it differs from any other codeword in at least
t + 1 many places; therefore, the codeword we started from is
completely unambiguous, and we can correct these errors.
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Example. Using this theorem, we can see that both of our code-
words can correct at most one error in any codeword, because
their Hamming distances were both three.

9.3 Finding Codes

Now that we’ve made this formal, we can now state our question
rigorously:

Problem. Let Aq(n, d) denote the maximum number of elements
in a block-length n q-ary code C with d(C) ≥ d. What is Aq(n, d)
for various values of q, n, d?

This problem is open for most values of n, q, d! To give examples,

2720 ≤ A2(16, 3) ≤ 3276,

are the best bounds currently known45 for these parameters, and
in general A2(n, k) is open for n ≥ 17, k ∈ {3, 4, 5, 6}.
So: we have a mathematical object that on one hand seems incred-
ibly practical (almost all modern electronical objects need some
automated way to correct for errors) and also shockingly open (we
don’t know what the most efficient codes are for even very small
block lengths n and distances d!) This, for me, is the sign of an
exciting area of research: we both know nothing and want to be
able to know everything!

We do know some values of Aq(n, d), though! We examine a
handful of such values here, through the following theorems:

Theorem. Aq(n, 1) = qn, for any q, n.

Proof. First, notice that any code C has distance at least 1; this
is by definition, as

d(C) = min
c1 6=c2∈C

d(c1, c2),

and the smallest distance between any two nonequal words c1, c2
is at least 1 (because if they were distance 0, then they would be
equal!)

Consequently, Aq(n, 1) is just asking us for the maximum number
of elements in a q-ary block-length n code, as the “distance 1”
property is trivial to satisfy! Consequently, the code with the
maximum number of elements is simply the code given by taking
all of the possible code words: that is, it is the set of all q-ary
strings of length n. This set has qn elements (we’re choosing n
things from the set {0, 1, . . . q−1} with replacement where we care
about the order!) so we’ve proven our claim.

Theorem. Aq(n, n) = q, for any q, n.

Proof. First, notice that if we take the code

n zeroes︷ ︸︸ ︷
000 . . . 0,

n ones︷ ︸︸ ︷
111 . . . 1,

n twos︷ ︸︸ ︷
222 . . . 2, . . . ,

n copies of (q−1)︷ ︸︸ ︷
q − 1 . . . q − 1

this code has q elements, all of which are distance n apart. So we
have shown that Aq(n, n) ≥ q for any q, n.

So it suffices to prove that q is an upper bound for the size of any
such code C, as well! To do this: take any q-ary block-length n
code C with d(C) ≥ n. Because C is a block-length n code, it is
impossible for any two words to disagree in more than n places
(as each word is length n); therefore, we can actually say that
d(C) = n.

45 See http://www.win.tue.nl/ aeb/codes/binary-1.html for the specific
bounds stated here. For general information on what we know and do not
know, check out http://www.codetables.de/!)
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Suppose, for contradiction, that C has q+1 or more words. Then,
because there are q choices of symbol for the first symbol in each
of the words of C, and there are q + 1 words in total, there must
be two words c1, c2 ∈ C that start with the same symbol. But
this means that d(c1, c2) ≤ n− 1, because they can disagree in at
most n − 1 places; in other words d(C) ≤ n − 1, a contradiction!
Therefore, we have shown that |C| ≤ q, as claimed.

Working with other cases, however, gets harder in a hurry. Con-
sider the following problem:

Problem. What is A2(n, 2) for arbitrary n?

Answer. We start answering this problem by gathering some
data first. For n = 2, this is a pretty simple problem; we’ve
already shown above that A2(2, 2) = 2.

Let’s try n = 3 now. Assume without loss of generality that the
all-zero codeword 000 is in our binary block-length-3 distance 2
code C. What else can we put in this code?

Well, we could add in 111, to get the code

{000, 111};

by inspection, we cannot add any more words to this code, as any
other word would either have one 1 (and thus be distance 1 from
000) or two 1’s (and thus be distance 1 from 111.)

Alternately, instead of adding in 111, we could add in the three
words 011, 101, 110, to get the code

{000, 011, 101, 110}.

This is a distance-2 code; all of the “two-1’s” words are distance
2 from 000, and also distance 2 from each other (prove this if you
don’t see why!) We cannot add any more words to this code, as
all remaining words have either one 1 or three 1’s, and in either
case are distance 1 from one of our “two 1’s” words.

By exhaustion, then, we seem to have shown that A2(3, 2) = 4.
By using a similar technique, we can see that it looks likely that
A2(4, 2) = 8; if we start with the all-zero string 0000 and add in
the “two-1’s” words, we get

{0000, 0011, 0101, 0110, 1001, 1010, 1100},

to which we can also add the “four-1’s” word 1111 to get

{0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111}.

We clearly cannot add more words to this code, as any other word
would have either one or three ones, and thus be within distance
1 of one of our existing codewords!

Note that we haven’t proven that this is the largest code possible;
unlike our earlier work, we haven’t considered other cases like
adding in the “three-1’s” words instead of the “two-1’s” words.
You can try (check it!) using those codewords, and verify that
the resulting code is smaller than what we have here; however, it
also seems likely that going through all of the other ways to grow
this code would be painful / not a good proof method for us to
pursue.

Instead, we’ll stick with intuition for now; it “looks like” 8 is the
size of the largest code for n = 4, and hopefully we’ll come up
with a proof of this later.

Similarly, you could studyA2(5, 2). To continue the pattern, you’d
want the all-zero word 00000, all of the “two 1’s” words, of which
there are

(
5
2

)
= 10 (because you have five slots to put 1’s in, and

you’re placing two 1’s,) and all of the “four 1’s” words, of which
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there are
(

5
4

)
= 5 (same reasoning.) This gives us 1 + 10 + 5 = 16,

which gives us an interesting pattern: we have

A2(2, 2) A2(3, 2) A2(4, 2) A2(5, 2)
Guesses 2 4 8 16

,

which might point to a conjecture of A2(n, 2) = 2n−1!

With this data collected, we transition from our guesses above to
some actual proofs:

Theorem. A2(n, 2) = 2n−1.

Proof. As before, we prove this in two stages. First, we establish
a lower bound of 2n−1 by giving a concrete example that shows
this is possible.

To do this, consider the binary block-length n code C formed
by taking all of the code words with an even number of 1’s. I
claim that this code has distance 2. To see why, consider any
two words w1, w2 with d(w1, w2) = 1. These two words disagree
in exactly one place; so, outside of that one place, they have the
same number of 1’s, and at that place one is 1 and the other is 0.

But this means that one of w1, w2 has exactly one more 1 than
the other; in other words, it is impossible for both w1, w2 to have
an even number of 1’s!

So, we have shown that C is a distance-2 block-length n binary
code. How many elements are in C? I claim that it is 2n−1, or in
other words that half of the total number of possible codewords46

(Z2)n have an even number of 1’s, and prove this by induction on
n.

Our base case is immediate: if n = 1, then there is exactly one
code word, 0, that has an even number of 1’s.

For our inductive step: assume that half of the elements of (Z2)n

have an even number of 1’s, and the other half have an odd number
of 1’s. Look at the elements of (Z2)n+1, and divide them into two
groups: those whose last element is a 0, and those whose last
element is a 1.

If you ignore the last element, then exactly half of the “last-
element-zero” words have an even number of 1’s, and half have an
odd number of 1’s; similarly, exactly half of the “last-element-one”
words have an even number of 1’s, and half have an odd number
of 1’s, by induction! Therefore, by taking the even-number-1’s
half from the last-element-zero words, and the odd-number-1’s
half from the “last-element-one” words, we have on one hand all
of the “total number of 1’s is even” numbers, and on the other
hand half of the elements in total from (Z2)n+1! So we’ve proven
our claim by induction, and therefore proved that |C| is precisely
half of |(Z2)n| = 2n; i.e. |C| = 2n−1, as claimed.

This does the first half of our proof; that 2n−1 is a lower bound.
We now seek to prove that it is an upper bound, as well!

To see this, consider the following graph:

• Vertices: the set (Z2)n.

• Edges: connect two words w1, w2 in our set with an edge if
and only if d(w1, w2) = 1.

We draw a few examples of these graphs at right. 00

01

10

11

000

001

010

100

011

101

110

111

Notice that these graphs are precisely just n-dimensional cubes!
This shouldn’t be too surprising — after all, the vertices of the
unit cube in n dimensions are precisely all of the points in Rn
whose coördinates are either 0 or 1 — but it’s pretty nonetheless.

46Because there are 2n many words in (Z2)n, as you’ve seen in the enumer-
ation part of this paper!

107



What I want to consider instead, here, is what codes correspond
to on these graphs. In particular, suppose we take the graph
above, and draw in the two distance-2 block-length-3 binary codes
we came up with earlier.

Notice how in both cases, we never had any edges connecting two
codewords! If you think about this for a moment, this makes sense:
if two words are connected by an edge, then they are distance 1
from each other, which would cause a problem for any code in
which all of our words are distance at least 2 from each other.

000

001

010

100

011

101

110

111

000

001

010

100

011

101

110

111

{000,111} {000,011,101,110}

Also, notice that in the graph above, each vertex has degree n in
the n-dimensional cube! This is again not hard to see: if we have
any word w in (Z2)n, there are exactly n words at distance 1 from
w, as we get exactly one such word for each bit in w that we can
change.

By combining these observations, we can prove our claim! To do
this, take any block-length n distance-2 binary code C, and label
it on the n-dimensional cube graphs above. Redraw our graphs
by “clumping together” all of the codewords into one cluster, and
the “non-codewords” into another cluster:

000 001

010

100

011

101

110 111

000

001
010
100
011
101
110

111

In the drawing above, the edges going from one cluster to the
other are bolded, while the edges within a cluster (where they
exist; they exist on the LHS, but not on the RHS) are dashed.

If you look at the “codeword” cluster, you can immediately see
that the total number of edges connecting the codeword cluster

to the non-codeword cluster is just |C| · n .

This is because there are |C| vertices in the codeword cluster,
each has n edges leaving it by our earlier observation, and all
of those edges must go to non-codewords (again, by our earlier
observations!)

Conversely, if you look at the “non-codeword” cluster and count
edges there, you can see that the total number of edges from it to

the codeword cluster is at most (# non-codewords) ·n .

This is because (again) each vertex has degree n! Notice that this
time we don’t know the exact number of edges going from non-
codewords to codewords; not every edge from a non-codeword
needs to go to a codeword, as our examples earlier demonstrate!
However, we know that there are at most as many edges from
non-codewords to codewords as our bound above, which is enough
for our claim.

Finally: we know that these two quantities are equal, because
they’re both counting the same thing: the edges from the code-
words to the non-codewords!

Therefore, we have |C| · n ≤ (# non-codewords) · n. Dividing by

n gives us |C| ≤ (# non-codewords) .

But this means that there must be at least as many non-codewords
as codewords; in other words, that C can contain at most half
of the elements of (Z2)n! In other words, we’ve proven that
A2(n, 2) ≤ 2n−1, which finishes the second part of our proof!
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Thanks go to the following students who’ve caught typos on earlier
versions of these notes:

• Steve Quindo
•
•

(If you spot a typo, email me to have your name added here!
Also, if you stop by my office I am happy to pay a bounty of one
chocolate fish per typo found :D)
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