
Department of
Mathematics

and
Department of

Computer Science

CompSci 225 (2019)

Discrete Structures in

Mathematics and Computer Science

Coursebook

2

Contents

1 Logic and Proofs 1

1.1 Introduction to logic 1

1.2 Truth values 2

1.3 Tautologies, contradictions and contingent
propositions 5

1.4 Logical equivalence and logical implication 5

1.5 Introduction to proofs 7

1.6 Proofs by contraposition and contradiction 10

1.7 Counterexamples and proof by cases . . . 13

1.8 Proof by construction 13

1.9 Language in proofs 14

1.10 Predicates and Quantifiers 15

1.11* Tautologies and implications in predicate
logic . 18

2 Integers and Divisibility 21

2.1 Definitions 21

2.2 Basic properties of integers 22

2.3 Finding all factors of a positive integer . . 23

2.4 Common Divisors 25

2.5 The Euclidean algorithm 26

2.6 Congruences and modular arithmetic . . . 29

3 Induction and Recursion 33

3.1 Induction 33

3.2 The second principle of mathematical in-
duction 38

3.3 Loop invariant theorem 39

3.4 Recursive definitions 39

3.5 * Recurrence relations 41

3.6 * Solving recurrence relations 43

3.6.1 Solving linear homogeneous recur-
rence relations 44

4 Graphs 47

4.1 Introduction to graphs 47

4.2 Basic terminology 53

4.3 Representing graphs 60

4.4 Connectivity, paths and circuits 64

4.5 Euler paths 71

4.6 * Isomorphism of graphs 76

4.7 * Hamilton paths and circuits 83

i

ii CONTENTS

5 Trees 87

5.1 Introduction to trees 87

5.2 Some applications of trees 94

5.3 Properties of trees 95

5.4 Expression trees 98

5.5 Spanning trees 99

6 Sets, Relations and Functions 101

6.1 Sets . 101

6.2 Set operations 103

6.3 Ordered pairs, Cartesian products 106

6.4 Relations 107

6.5 Equivalence relations 109

6.6 Partial orderings 111

6.7 Functions 123

6.8 Equality of functions 124

6.9 Function composition 125

6.10 Partial functions 126

6.11 Types of functions 126

7 Enumeration 131

7.1 Introduction 131

7.2 Arrangement problems 131

7.3 Selections 133

7.4 Selections with repetitions allowed 135

7.5 Some properties of binomial coefficients . 137

7.6 The inclusion/exclusion principle 138

7.7 The pigeonhole principle 140

7.8 * Trickier pigeonhole applications 142

8 Deterministic Finite Automata 143

8.1 Alphabet and strings 143

8.2 Operations on languages 144

8.3 Designing Finite Automata 149

8.4 Automata for operations on languages . . 150

9 Codes 153

9.1 Prefix codes and optimal binary trees . . 153

9.2 Introduction to error-correcting codes . . 157

9.3 * Gray codes 161

9.4 * RSA public-key cryptosystem 162

Index 167

Logic and Proofs

1.1 Introduction to logic

A proposition is a statement which is either true or false.
For example:

1. “The sun is a star.”

2. “The moon is made of cheese.”

3. “ 2 + 2 = 4.”

4. “ 2 + 3 = 7.”

5. “Every even integer greater than 4 is the sum of
two prime numbers.”

6. “ 2 > 3 or 2 < 3.”

7. “If the world is flat then 2 + 2 = 4.”

We only insist that the statement is true or false, we
do not need to know which it is. Notice that the last
two examples are formed by combining simpler proposi-
tions, namely “2 > 3”, “2 < 3”, “The world is flat”, and
“2 + 2 = 4”. A proposition which has been built up in
this way is called a compound proposition, as opposed to
a simple proposition which cannot be split into simpler
propositions.

Example 1.1 Identify which of the following are propo-
sitions, and which are not:

1. “ 2x = 100”

2. “ 2x = 100 for some integer x”

3. “Shake well before opening”

4. “CompSci 225 is the largest course at the Univer-
sity of Auckland”

Notation

We typically use letters like p, q and r to stand for simple
propositions: we call these propositional variables. We
usually use capital letters like A, B and C to denote
compound propositions, or propositions which might be
simple or might be compound.

1

2 TOPIC 1. LOGIC AND PROOFS

Connectives

When we want to build more complicated propositions
out of simpler ones, we use connectives. If A and B are
propositions, then so are the following:

¬A A ∧B A ∨B A→ B A↔ B

We read these as “not A”, “A and B”, “A or B”, “A im-
plies B” (or “if A then B”) and “A is equivalent to B”
(or “A if and only if B”) respectively. We can combine
compound propositions into more and more complicated
propositions. For example, if p denotes the proposition
“It is raining”, q denotes the proposition “The sun is
shining” and r denotes the proposition “There is a rain-
bow”, then (p ∧ q) → r represents the proposition “If it
is raining and the sun is shining, then there is a rain-
bow”, while (p∧¬r)→ ¬q represents the proposition “If
it is raining and there is no rainbow, then the sun is not
shining”.

Example 1.2 How can the following advertising slogan
be translated into a logical expression?

“If you drink and drive, you’re a bloody
idiot.”

Solution. Let p denote the proposition ”You drink”.
Let q denote the proposition ”You drive”.
Let r denote the proposition ”You’re a bloody idiot”
Then the slogan can be expressed as

(p ∧ q) → r

Example 1.3 How can the following English sentence be
translated into a logical expression?

“You cannot go to the pub if you are under
18 years old, unless you are accompanied by
a parent.”

1.2 Truth values

We refer to the truth or falsity of a proposition as its
truth value. The truth value of a compound proposition
depends only on the truth or falsity of the propositions
from which it was built, according to rules which we can
give for each connective. We will consider these in detail
later, but we can summarize them in the following table,

1.2. TRUTH VALUES 3

which we call a “truth table”. In this table, 0 represents
“false” and 1 represents “true”.

A B ¬A A ∧B A ∨B A→ B A↔ B
0 0 1 0 0 1 1
0 1 1 0 1 1 0
1 0 0 0 1 0 0
1 1 0 1 1 1 1

Truth

The truth value of a compound proposition depends on
the truth values of the propositions it was built from,
according to the following rules:

• ¬A is false if A is true, and it is true if A is false.

• A ∧ B is true if both A and B are true: otherwise
it is false.

• A∨B is true if either A or B is true, or if both are
true (so ∨ represents “inclusive or”).

• A→ B is true unless A is true and B is false. [This
rule may seem odd—why is (0 = 1)→ (2 + 2 = 5)
true? This rule is a standard convention in logic.
To help make sense of it, consider the statement
“For any real number x, if x > 2 then x2 > 4”.
Try substituting the values x = 1 and x = −3 into
“if x > 2 then x2 > 4”.]

• A ↔ B is true if A and B have the same truth
value, and false otherwise.

Example 1.4 It is important to distinguish the logical
connective → from the rules of deduction.

Suppose that the proposition “if it snows today, then we
will go skiing” is true. Suppose also that the hypothe-
sis “it is snowing today” is true. Then from these two
propositions we can deduce the conclusion “we will go
skiing”.

The rule of deduction is called modus ponens and can be
written as (p ∧ (p→ q))→ q.

Truth tables

Using these rules, we can build up the truth table for any
compound proposition.

4 TOPIC 1. LOGIC AND PROOFS

Example 1.5 For example, here are the truth tables for
p→ (q ∨ ¬r) and (p→ q) ∨ (q → r).

p q r ¬r q ∨ ¬r p→ (q ∨ ¬r)
0 0 0 1 1 1
0 0 1 0 0 1
0 1 0 1 1 1
0 1 1 0 1 1
1 0 0 1 1 1
1 0 1 0 0 0
1 1 0 1 1 1
1 1 1 0 1 1

p q r (p → q) ∨ (q → r)
0 0 0 0 1 0 1 0 1 0
0 0 1 0 1 0 1 0 1 1
0 1 0 0 1 1 1 1 0 0
0 1 1 0 1 1 1 1 1 1
1 0 0 1 0 0 1 0 1 0
1 0 1 1 0 0 1 0 1 1
1 1 0 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 1

The second style becomes more useful as the propositions
get more complicated. The column between the vertical
lines gives the truth value of the whole proposition.

Example 1.6 Write out the truth table for p→ (q∨ r).

Example 1.7 Let

p : Blaise Pascal invented several calculating ma-
chines,

q : The first all-electronic digital computer was
constructed in the twentieth century,

r : π was calculated to 1,000,000 decimal digits in
1954.

Represent the following proposition symbolically and con-
struct a truth table.

Either Blaise Pascal invented several calcu-
lating machines and it is not the case that
the first all-electronic digital computer was
constructed in the twentieth century: or π
was calculated to 1,000,000 decimal digits in
1954.

Other connectives

We can define some other useful binary connectives be-
sides the ones we have already mentioned. The most

1.3. TAUTOLOGIES, CONTRADICTIONS AND CONTINGENT PROPOSITIONS 5

useful ones are ⊕, nand and nor, which denote “exclu-
sive or”, “not-and” and “not-or”. Thus A ⊕ B is true if
and only if either A is true or B is true, but not both.
Also A nand B is true if and only if A ∧B is false, and
A nor B is true if and only if A ∨B is false.

Example 1.8 Complete the following truth table:

p q p⊕ q p nand q p nor q
0 0
0 1
1 0
1 1

1.3 Tautologies, contradictions and contingent
propositions

A tautology is a proposition that is always true , no mat-
ter what truth values we assign to the propositional vari-
ables it contains. For example, we showed in an earlier
example that (p→ q)∨ (q → r) is a tautology. A contra-
diction is a proposition that is always false , no matter
what truth values we assign to the propositional variables
it contains. A proposition that is neither a tautology nor
a contradiction is said to be contingent. Here are some
examples.

1. p ∨ ¬p is a tautology.

2. p→ p is a tautology.

3. p ∧ ¬p is a contradiction.

4. ¬(p→ q) ∧ ¬p is a contradiction.

5. p→ (q → r) is contingent.

6. p ∧ (q → p) is contingent.

1.4 Logical equivalence and logical implication

Two propositions A and B are logically equivalent , writ-
ten A ⇔ B, if, whenever we assign truth values to the
propositional variables they contain, A and B have the
same truth value. Thus A ⇔ B holds if and only if
A ↔ B is a tautology. To decide whether or not two
propositions are logically equivalent, we can use truth
tables. For example, to show that p → q ⇔ ¬q → ¬p,
we build up the following truth table:

p q p → q ¬q → ¬p
0 0 1 1 1 1
0 1 1 0 1 1
1 0 0 1 0 0
1 1 1 0 1 0

Notice that columns 3 and 5 are identical.

6 TOPIC 1. LOGIC AND PROOFS

Alternatively, we can try to convert one to the other
using the following standard logical equivalences:

¬¬p ⇔ p Double negation

p ∧ q
p ∨ q

⇔
⇔

q ∧ p
q ∨ p

}
Commutative laws

p ∧ (q ∧ r)
p ∨ (q ∨ r)

⇔
⇔

(p ∧ q) ∧ r
(p ∨ q) ∨ r

}
Associative laws

p ∧ (q ∨ r)
p ∨ (q ∧ r)

⇔
⇔

(p ∧ q) ∨ (p ∧ r)
(p ∨ q) ∧ (p ∨ r)

}
Distributive laws

p ∧ p
p ∨ p

⇔
⇔

p
p

}
Idempotent laws

¬(p ∧ q)
¬(p ∨ q)

⇔
⇔

¬p ∨ ¬q
¬p ∧ ¬q

}
De Morgan’s laws

p → q
p → q

⇔
⇔

¬p ∨ q
¬(p ∧ ¬q)

}
Implication laws

For example, we can show that p → q ⇔ ¬q → ¬p as
follows:

p→ q ⇔ ¬p ∨ q

⇔ q ∨ ¬p
⇔ ¬¬q ∨ ¬p
⇔ ¬q → ¬p

Example 1.9 Show that ¬(p∨q) and ¬p∧¬q are logically
equivalent. This equivalence is one of De Morgan’s laws
for propositions, named after the English mathematician
Augustus De Morgan, of the mid-19th century.

Example 1.10 Use De Morgan’s laws (and the other
logic laws) to expand and simplify the negations of these
propositions.

1. p ∧ ¬q

2. (p→ q)

3. (p ∨ ¬q) ∧ (¬p ∨ r)

4. (p ∧ ¬q ∧ ¬r) ∨ ¬(q ∨ ¬r).

1.5. INTRODUCTION TO PROOFS 7

Logical implication

Let A and B be propositions. We say that A logically
implies B, written A⇒ B, if, whenever we assign truth
values to the propositional variables they contain, if A
is true then B is also true. Thus A ⇒ B if and only if
A→ B is a tautology, and A⇔ B if and only if A⇒ B
and B ⇒ A. That is, A ⇔ B if and only if A ↔ B is a
tautology.

To clarify, the symbol → is a logical operation (defined
using a truth table) while the symbol ⇒ usually denotes
some process of deduction.

1.5 Introduction to proofs

Mathematics is different from many other facets of life, as
it is based on logic and proof. One of the most important
reasons to study mathematics is to improve your ability
to think logically, precisely, carefully and critically.

Definitions

An important principle in mathematics is the need for
precise definitions. Every technical word or symbol in
mathematics has a precise definition. It must be un-
ambiguous whether an object satisfies a definition or not.

Example 1.11 Which of the following are good defini-
tions?

1. An integer is even if it is something like 2 or 4.

2. An integer n is even if there exists an integer k
such that n = 2k.

3. An integer n is even if there exists an integer k
such that n = 2k + 1.

4. An integer n is even if n ∈ A.

5. An integer n is even if sin(n) = cos(n) = 0.

Theorems

A theorem is a mathematical proposition that
is true.

Theorems are essentially conditional statements, although
the wording of a theorem may obscure this fact. Since
theorems are conditional then we have to start doing
mathematics with some initial facts that are assumed
to be true: these are given by definitions and axioms.

There are several basic types of theorem:

8 TOPIC 1. LOGIC AND PROOFS

• ‘a is a B’ (i.e., the object a satisfies the definition
B).

• ‘if A then B’ (i.e., if a is an object that satisfies
definition A then it also satisfies definition B).

• ‘there is an a that satisfies B’ (i.e., a definition is
not vacuous).

Example 1.12 Theorem: 8 is an even integer.

Example 1.13 Theorem: If n is even then n2 is even.

Example 1.14 Theorem: Let n ∈ N. A set with n ele-
ments has exactly 2n subsets. (In this wording the theo-
rem does not seem to be a conditional statement; express
this theorem as a conditional statement.)

Example 1.15 Theorem: Let n ∈ N. There exists a set
with n elements.

Hypothesis and conclusion

When the theorem is expressed as a conditional state-
ment A ⇒ B then A is called the hypothesis and B is
called the conclusion of the theorem.

Proofs

Mathematics is about facts (theorems). The interesting
question is how do facts become “accepted” or “agreed”
as part of mathematics. The discoverer of a mathemat-
ical fact is required to communicate their ideas to the
wider community of mathematicians. But mathemati-
cians are a hard audience to please: they are sceptical
and don’t want to be fooled. So they do not simply
believe everything that they are told is true. Mathe-
maticians first insist on precise definitions before even
agreeing that a claim is meaningful. Then, mathemati-
cians are not convinced that a statement is true until
a precise, rigorous, logical argument has been provided
and checked: a mathematical proof. The ability to think
logically and to read proofs not only increases mathe-
matical understanding, but also hones skills that can be
used in other situations. In this section we will discuss
some basic methods of proof.

1.5. INTRODUCTION TO PROOFS 9

Direct proofs

By a proof of a theorem we mean a logical argument that
establishes the theorem to be true.

The most natural form of proof is a direct proof.

Suppose that we wish to prove the theorem P ⇒ Q.
Since P → Q is true whenever P is false, we need only
show that whenever P is true, so is Q.

Therefore:

in a direct proof we assume that the hypothe-
sis of the theorem, P , is true and demonstrate
that the conclusion, Q is true.

It then follows that P → Q is always true.

Examples with integers

We will illustrate some types of proofs by proving certain
elementary facts about the integers. (Later on we will
prove results about Sets and Graphs using the same types
of proofs). We will use the following two definitions.

1. An integer n is called even if it can be written in
the form n = 2k for some integer k.

2. An integer n is called odd if it can be written in the
form n = 2k + 1 for some integer k.

Example 1.16 Prove the theorem: n = 7 is an odd
integer.

Example 1.17 Prove the theorem: If n is an odd integer
then n+ 1 is an even integer.

Proof: Let n = 2k+ 1 for some integer k. Then n+ 1 =
2k + 1 + 1 = 2(k + 1) is of the form 2l for some integer
l, and so n+ 1 is even.

We will also use the fact that every integer is either even
or odd but not both. The following theorem is proved
using a direct proof.

Example 1.18 Prove the theorem: If n is an even inte-
ger, then n2 is an even integer.

10 TOPIC 1. LOGIC AND PROOFS

Example 1.19 Is the following argument correct? It
supposedly shows that n is an even integer whenever n2

is an even integer.

Suppose that n2 is even. Then n2 = 2k for
some integer k. Let n = 2l for some integer
l. This shows that n is even.

Example 1.20 Prove the theorem: If x is a real number
and x2 − 1 = 0, then x = −1 or x = 1.

Law of syllogism

Many proofs use the law of syllogism, which states

[(p→ q) ∧ (q → r)]⇒ (p→ r).

Example 1.21 Suppose that x is some fixed real number,
and let p, q, r and s be the propositions

p: x2 − 1 = 0

r: (x + 1)(x− 1) = 0

s: x+ 1 = 0 or x− 1 = 0

q: x = −1 or x = 1.

Write out the logical expression established in the previ-
ous example. Hence, by two applications of the law of
syllogism we conclude that p⇒ q, that is, the theorem is
proved.

1.6 Proofs by contraposition and contradiction

The law of contraposition

The contrapositive law states that the propositions p→ q
and ¬q → ¬p are logically equivalent.

To prove a theorem p → q by this method, we give a
direct proof of the proposition ¬q → ¬p by assuming
¬q and proving ¬p. The contrapositive law allows us to
conclude that p→ q.

1.6. PROOFS BY CONTRAPOSITION AND CONTRADICTION 11

Example 1.22 Find the contrapositive of the statement:

If I have studied hard enough, I will find the
exam easy.

Solution. If I find the exam difficult, then I didn’t study hard
enough.

Example 1.23 Prove the following theorem using the
law of contrapositive: If x + y > 100, then x > 50 or
y > 50.

Example 1.24 Prove the following theorem using the
law of contrapositive: If n is an integer and n2 is even,
then n is even.

Proof by contradiction

A very different style of proof is proof by contradiction.

To prove the theorem p→ q: Assume p and ¬q are true
and deduce a false statement r. Since (p ∧ ¬q) → r is
true but r is false, we can conclude that the premise
p∧¬q of this conditional statement is false. But then its
negation ¬(p ∧ ¬q) is true, which is logically equivalent
to the desired statement p→ q.

Example 1.25 Show that ¬(p∧¬q) is logically equivalent
to p→ q.

Example 1.26 Prove by contradiction: If a, b ∈ Z are
such that a is odd and a+ b is even then b is odd.

Solution. Assume, for a contradiction, that a is odd, a + b is
even and b is even. So a = 2k + 1 and b = 2l for some integers
k, l. But then a+ b = 2k+1+ 2l = 2(k+ l) + 1. Since k+ l ∈ Z it
follows that a+ b is odd, but this contradicts the fact that a+ b is
even. Hence b cannot have been even and so b must be odd.

Example 1.27 Prove by contradiction: If a, b ∈ Z then
a2 − 4b ̸= 2.

Proving this theorem by contradiction seems natural be-

12 TOPIC 1. LOGIC AND PROOFS

cause the theorem expresses a negative idea (that a2−4b
is not equal to 2). Thus, when we negate the conclusion,
we obtain the positive statement that a2 − 4b = 2.

Example 1.28 Prove by contradiction that there is no
rational number r such that r2 = 2.

Recall that a rational number is one that can be writ-
ten as the quotient of two integers. Note also that the
theorem to be proved can be written as the conditional
statement: If r is a rational number, then r2 ̸= 2. Again
proving this theorem by contradiction seems natural be-
cause the theorem expresses a negative idea (that r2 is
not equal to 2). Thus, when we negate the conclusion,
we obtain the positive statement that there is a rational
number r such that r2 = 2.

Example 1.29 Prove by contradiction: If a, b ∈ R are
such that a ∈ Q and a+ b ̸∈ Q then b ̸∈ Q.

Example 1.30 Prove by contradiction: If n is the sum
of the squares of two odd integers, then n is not a perfect
square.

Example 1.31 Prove by contradiction that there are in-
finitely many prime numbers.

Solution. (This proof is due to the great Euclid, who lived around
300 BC in ancient Greece.)

Assume, for a contradiction, that there are finitely many primes.
Write them as {p1, p2, ...pn} for some natural number n. Consider
the number q = p1p2...pn+1. By its construction, q is not divisible
by any of the primes p1, p2, ...pn. Hence, q must itself be prime
or it must be divisible by another prime that is not in the set
{p1, p2, ...pn}. In either case, we find a prime that is not in our
original set. Hence we achieve our contradiction.

If and only if statements

To prove: A if and only ifB then we need to proveA→ B
and B → A. Sometimes “if and only if” is abbreviated
as “iff”.

Example 1.32 Prove that n is even if and only if n2 is
even.

1.7. COUNTEREXAMPLES AND PROOF BY CASES 13

1.7 Counterexamples and proof by cases

Proof by cases

There are other types of proofs as well. One method
of proof that is quite important in discrete mathematics
is proof by mathematical induction, which is discussed
later in the course. Another type of proof is a proof by
cases, in which the theorem to be proved is subdivided
into parts, each of which is proved separately. The next
example demonstrates this technique.

Example 1.33 Show that if n is an integer then n3 − n
is even. (Since every integer n is either even or odd,
consider these two cases.)

Example 1.34 Let x, y ∈ R. Prove that |xy| = |x| · |y|.

Counterexamples

To close this section, we will briefly consider the problem
of disproving a proposition p→ q, that is, of showing that
it is false. A conditional statement is false only when its
premise is true and its conclusion is false, we must find
an instance in which p is true and q is false. Such an
instance is called a counter-example to the statement.

Example 1.35 For example, consider the statement: If
an integer n is the sum of the squares of two even in-
tegers, then n is not a perfect square. To disprove this
statement, find a counterexample.

1.8 Proof by construction

This method is a much more ‘positive’ method than proof
by contradiction. It is a method for proving the existence
of certain objects, by actually finding one.

Example 1.36 Prove that for every positive integer k
there exists a positive integer n greater than k such that
the remainder of n when divided by 5 is 1.

We can prove it by constructing such a positive integer

14 TOPIC 1. LOGIC AND PROOFS

n. Simply take n = 5k + 1. This is greater than k, and
when we divide n by 5 we get remainder 1.

1.9 Language in proofs

Human understanding and communication rely on lan-
guage. The purpose of a proof is to communicate the
truth of a statement through language. Remember that
a proof is supposed to convince a sceptical reader that a
statement is true. The right way to read a proof is to not
believe it, but to challenge the proof and argue with it,
and to try to break it. The right way to write a proof is
to make the argument so clear and natural that no-one
can doubt that the statement is true. To write a beauti-
ful and convincing proof you should give the reader clues
to what is going on both locally and in the proof as a
whole. In the previous sections we looked at the proof
structure as a whole; now we look at the usage of ordi-
nary English, which mostly gives the local information
about the proof.

Rules of thumb for proofs

1. Tell the reader from the start what the general ap-
proach of the proof will be.

2. Introduce names for objects before you use them.
Ensure that every technical word has a precise mean-
ing that has been defined earlier (or is standard
terminology in the subject).

3. Use words like “hence”, “therefore”, “thus”, “so”,
“then”, “note,” “recall” etc as signposts.

A proof that is well laid-out and signposted is much easier
to read.

We now outline some starting statements and end cues
that you might use in some common proof formats.

Direct proof

To Prove: Implication p→ q. If p true then q true.

Method: Assume p true and deduce q true.

Start Cues: “We prove directly . . . ”, “Let p be as in
the statement”.

End Cues: “q, as required.” “Q.E.D.”, ✷, “. . . as was
to be shown”/ Restatement of the result.

The logical structure of direct proof is the most simple-
minded and most common: assume the hypothesis or
hypotheses and deduce the conclusion. Direct proof is
frequently cued in the first sentence.

The “Q.E.D.” abbreviating the Latin “Quod Erat Demon-
strandum” that you may have seen or written ought to
be a reliable cue to the end of a direct proof.

1.10. PREDICATES AND QUANTIFIERS 15

Proof by contraposition

To Prove: Implication p→ q. If p (true) then q (true).

Method: Prove “¬q → ¬p”. Assume not q, deduce not
p.

Start Cues: “We prove the contrapositive”, “We show
not q implies not p”, “We procede indirectly”, “As-
sume not q . . . ”

End Cues: “So, by contraposition”, Restatement of the
original ‘p→ q’

The thing to remember is that once you start down this
path assuming ¬q and deducing ¬p, the proof is really a
direct one, although something different than what you
started with.

Proof by contradiction

To Prove: Implication p→ q. If p then q.

Method: Assume p AND not q, deduce a contradiction

Start Cues: “We prove by contradiction”, “Assume, for
a contradiction”, “Suppose (not q)”

End Cues: “Which is a contradiction. Hence q must be
true, which completes the proof.”

Proof by cases

To Prove: (p ∨ q)→ r

Method: Prove p→ r, then prove q → r

Start Cues: “We prove by cases . . . ”

Case start: “Case 1 (2, . . .)”, “In the first case”

Case end: “. . . finishes Case 1”, “So we are done in the
first case”

End Cues: “So in either case . . . ”

1.10 Predicates and Quantifiers

A predicate is a function on some domain D such that
P (x) is a proposition/statement for each value x ∈ D.

For example, for D = N, P (n) could be any of

1. n is even.

2. n is prime

3. n = 3

4. n > 512

5. 1 + 2 + · · ·+ n = n(n+ 1)/2

These are not predicates P (n):

16 TOPIC 1. LOGIC AND PROOFS

1. n = x

2. 1 + 2 + · · ·+ n = n(n+ 1)/2 for all n

A statement like p(n) that includes the variable n is not
a proposition, since it cannot be said to be true or false
until we know what n is. There are two ways we can turn
it into a proposition. The first is to substitute in some
particular value of n, to get propositions like p(4) and
p(17). The other way is to quantify the predicate. To do
this we use one of the two quantifiers ∀ and ∃. The first
of these, ∀, is called the universal quantifier. It means
“For all ”, or “For every ”. So, for example, the
statement ∀n p(n) means “For every n, n is even”. The
second quantifier, ∃, is called the existential quantifier.
It means “For some ”, or “There exists such that”.
For example, ∃n p(n) means “There is some n such that n
is even”. So in this case ∀n p(n) is false, whereas ∃n p(n)
is true. Sometimes we make the domain of definition
more explicit: for example, we could have written these
examples as ∀n ∈ N (p(n)) and ∃n ∈ N (p(n)).

If we quantify a predicate p to get a proposition, the truth
value of a resulting proposition depends on the truth val-
ues of the various propositions p(d) for the elements d of
the domain of definition. To be precise, ∀x p(x) is true if
p(d) is true for every element d of the domain of defini-
tion of p. On the other hand, ∃x p(x) is true if p(d) is true
for at least one element d of the domain of definition.

Example 1.37 Let P (n) be the predicate with domain N
such that P (n) is true if and only if n is even. So P (1)
is false and P (2) is true.

Then ∀n ∈ N, P (n) is false and ∃n ∈ N, P (n) is true.

Example 1.38 Let P (n) be the predicate with domain Z
such that P (n) is true if and only if n2 ≥ n.

What are P (1) and P (2)?

Is ∀n ∈ Z, P (n) true or false?

Is ∃n ∈ Z, P (n) true or false?

What happens if we change P (n) to be the predicate n2 >
n?

Example 1.39 Consider the following statements (this
example is due to Lewis Carroll, and is discussed in Rosen’s
book). The first two are called premises and the third is
called the conclusion. The entire set is called an argu-
ment.

“All lions are fierce”
“Some lions do not drink coffee.”
“Some fierce creatures do not drink coffee.”

Let P (x), Q(x), and R(x) be the statements “x is a lion,”

1.10. PREDICATES AND QUANTIFIERS 17

“x is fierce,” and “x drinks coffee,” respectively. As-
suming that the universe of discourse is the set of all
creatures, express the statements in the argument using
quantifiers and P (x), Q(x), and R(x).

Example 1.40 Consider the following argument:

All humans make mistakes.
I do not make mistakes.
Therefore, I am not a human.

Express this argument using quantifiers.

Solution. Let p(x) be the statement ”x is human”.
Let q(x) be the statement ”x makes mistakes”.
The statement “All humans make mistakes” is ∀x, p(x) → q(x).
Let the constant symbol a stand for the individual ”I”.
Then the argument becomes:

(∀x(p(x) → q(x))) ∧ ¬q(a) → ¬p(a).

Free and bound variables

We refer to the variable n in a predicate p(n) as a free
variable. This is because we are free to substitute any
particular value of n to get a proposition. In contrast,
the variables n in ∀n p(n) or in ∃n p(n) are called bound
variables. They are bound by the quantifiers, so we can-
not substitute particular values in.

Predicates with more than one variable

We allow predicates to have two or more variables. For
example, we may use p(x, y) to denote the predicate “x
is greater than y”, (“x > y”) with domain of definition
the set R × R. Then x and y are both free variables in
p(x, y). We can quantify either one of the variables, or
we can quantify both of them. For example, ∀y p(x, y)
is a predicate that has only one free variable, namely
x. In this case, it means “x is greater than every real
number”. Of course, this is false for every real number
x (since p(x, x + 1) is false), so ∃x∀y p(x, y) is a false
proposition. On the other hand, consider the predicate
∃x p(x, y), which has y as its only free variable. This
means “Some real number is greater than y”. This is true
for every y, since for example p(y + 1, y) holds. So the
proposition ∀y∃x p(x, y) is true. This example shows that
we have to be careful about the order of the quantifiers:
∃x∀y p(x, y) and ∀y∃x p(x, y) do not have the same truth
value.

If the predicate has more than one variable, it is not
necessary for the domains of definition for the different
variables to be the same. For example, if P denotes the
set of all people, then we can use p(x, y) to denote the
relation “person x is more than y years old”, with domain

18 TOPIC 1. LOGIC AND PROOFS

of definition P × N. Of course, if we intend to use both
p(x, y) and p(y, x) then the domains should be the same.

Example 1.41 Suppose we define the predicates p(x, y)
for “x knows y”, q(x, y) for “x likes y”, r(x) for “x is
rich” and s(x) for “x is famous”, and the constant sym-
bol a for Andrew. Here are some examples of statements
we can translate into predicate logic.

• Everybody knows Andrew: ∀x p(x, a).

• Everybody who knows Andrew likes him: ∀x (p(x, a)→
q(x, a)).

• Nobody likes a person who is famous but not rich:
∀x∀y ((s(x) ∧ ¬r(x)) → ¬q(y, x)).

• Some famous people are not rich: ∃x (s(x)∧¬r(x)).

• Not every rich person is famous: either ¬∀x(r(x) →
s(x)) or ∃x(r(x) ∧ ¬s(x)).

• Everybody likes anybody who is rich: ∀x∀y (r(y)→
q(x, y)) or ∀y (r(y)→ ∀x q(x, y)).

• Andrew likes everybody who is not rich: ∀x(¬r(x) →
q(a, x)).

• Everybody likes somebody: ∀x∃y q(x, y).

Notice that we actually translate “Some famous people
are not rich” as “At least one famous person is not rich”.

Example 1.42 Let Q(x, y, z) be the statement “ x+ y =
z”. What are the truth values of the statements

∀x∀y∃zQ(x, y, z) and ∃z∀x∀yQ(x, y, z)?

Example 1.43 Use quantifiers to express the statement
“There is a woman who has taken a flight on every airline
in the world.”

1.11 * Tautologies and implications in predicate
logic

A proposition in predicate logic that is always true, no
matter what the domains of definition and meaning of
the predicates it contains (so long as the domains of def-
inition are non-empty) is said to be a tautology.

1.11.* TAUTOLOGIES AND IMPLICATIONS IN PREDICATE LOGIC 19

Example 1.44

1. ∀x∀y (p(x, y)→ p(y, x)) is not a tautology.

2. ∃x∃y (p(x, y)→ p(y, x)) is a tautology.

3. ∃x∀y p(x, y)→ ∀y∃x p(x, y) is a tautology.

4. ∀y∃x p(x, y)→ ∃x∀y p(x, y) is not a tautology.

Proof:

1. To show that a proposition is not a tautology, we
need to find some domain of definition and some
meaning for the predicate in which the proposition
is false. In this case we can take the domain to
be R and p(x, y) to be “x > y”. Then p(1, 0) is
true and p(0, 1) is false, so p(1, 0)→ p(0, 1) is false.
Thus there is some y such that p(1, y)→ p(y, 1) is
false, so ∀y (p(1, y) → p(y, 1)) is false. Therefore
there is some x for which ∀y (p(x, y) → p(y, x))
is false, so ∀x∀y (p(x, y) → p(y, x)) is false. Thus
∀x∀y (p(x, y)→ p(y, x)) is not a tautology.

2. To show that a proposition is a tautology, we need
to show it is true in any non-empty domain of def-
inition and any meaning of the predicate. So let D
be a non-empty set, and let p(x, y) be a predicate
with domain of definition D×D. Then, since D is
non-empty, we can find some d ∈ D. Now p(d, d)
is either true or it is false: either way, p(d, d) →
p(d, d) is true. Therefore there is some y ∈ D
such that p(d, y)→ p(y, d) is true, so ∃y (p(d, y)→
p(y, d)) is true. Thus there is some x ∈ D such that
∃y (p(x, y) → p(y, x)) is true, so ∃x∃y (p(x, y) →
p(y, x)) is true. Since this is true for any domain
D and any predicate p, ∃x∃y (p(x, y) → p(y, x)) is
a tautology.

3. Exercise

4. Exercise

Some implications

Recall that we say propositions A and B are logically
equivalent (written A ⇔ B) if A ↔ B is a tautology, in
other words if A and B must have the same truth value.
We say that A logically implies B (written A ⇒ B) if
A → B is a tautology, in other words, if A is true then
B must be true.

20 TOPIC 1. LOGIC AND PROOFS

Example 1.45

1. ∀x∀y p(x, y)⇔ ∀y∀x p(x, y).

2. ∃x∃y p(x, y)⇔ ∃y∃x p(x, y).

Proof:

1. Let D and E be non-empty sets, and let p be a
predicate with domain of definition D × E. Then
∀x∀y p(x, y) is true if and only if p(x, y) is true
for every (x, y) ∈ D × E, and the same holds for
∀y∀x p(x, y). So ∀x∀y p(x, y) and ∀y∀x p(x, y) al-
ways have the same truth value.

2. Exercise.

Negating quantifiers

1. ¬(∀n, p(n)) ⇔ ∃n, (¬p(n))

2. ¬(∃n, p(n)) ⇔ ∀n, (¬p(n))

Proof:

1. Let D be a non-empty set and let p be a predicate
with domain of definition D. Suppose ¬∀x p(x) is
true. Then ∀x p(x) is false, in other words it is not
the case that p(x) is true for every x ∈ D. So there
must be some x ∈ D for which p(x) is false. Then
¬p(x) is true, so ∃x¬p(x) is true.
On the other hand, if ¬∀x p(x) is false, then ∀x p(x)
is true, so p(x) is true for every x ∈ D. Thus ¬p(x)
is false for every x ∈ D, in other words there is no
x ∈ D for which ¬p(x) is true, so ∃x¬p(x) is false.

2. Exercise.

Example 1.46 Re-write these propositions without using
any negation symbols.

1. ¬∀x ∈ Z, ∃y ∈ Z, xy = 1.

2. ¬∃x ∈ R, ∃y ∈ Q, xy > 1.

Solution.

1. ∃x ∈ Z, ∀y ∈ Z, xy ̸= 1.

2. ∀x ∈ R, ∀y ∈ Q, xy ! 1.

Integers and Divisibility

2.1 Definitions

Basic objects we use in this course

• Natural numbers : These are 0, 1, 2, 3, 4, 5,
The set of all natural numbers is denoted by N.

We sometimes write Z≥1 or P for the set {1, 2, 3, . . .}
of natural numbers that are ≥ 1.

• Integers : These are . . . , –3, –2, –1, 0, 1, 2, 3,
The set of all integers is denoted by Z.

• Variables : We use symbols such as m, n, r, s, t
to denote integers whose values are variable or un-
known; we call these integer variables.

Factors

Let m and n be integers. Then we say that m is a factor
of n (or a divisor of n), or that m divides n, if n = k ·m
for some integer k.

Prime numbers

A prime number is a positive integer n which has exactly
two positive factors, namely 1 and n itself.

Rational numbers

A rational number is any number r that can be written
in the form m

n where m and n are integers and n > 0.

The integer m is called the numerator and the integer n
is called the denominator of the rational number r = m

n .

The set of all rational numbers is denoted by Q.

Example 2.1 5, 0, 2
−3 (= −2

3), and 11
123 are rational

numbers.

Every integer k is a rational number (because k = k
1).

21

22 TOPIC 2. INTEGERS AND DIVISIBILITY

2.2 Basic properties of integers

The following hold for all integers k, m and n :

Associative laws:

k + (m+ n) = (k +m) + n k · (m · n) = (k ·m) · n

Commutative laws:

k +m= m+ k k ·m= m · k

Identity laws:

k + 0= k k · 1 = k

Distributive law:

k · (m+ n) = (k ·m) + (k · n)

Other properties:

k + (−k) = 0 k · 0 = 0

Transitivity

If k is a factor of m, and m is a factor of n, then k is a
factor of n.

Proof. If m = ku and n = mv for integers u and v, then
n = mv = (ku)v = k(uv), with uv ∈ Z.

Anti-symmetry

Let m,n be integers such that m > 0 and n > 0: If m is
a factor of n, and n is a factor of m, then m = n.

Proof. Since m is a factor of n we have n = mk for some
integer k ≥ 1. Hence m ! n. Similarly, if n is a factor of
m then n ! m. Thus m ! n and n ! m, which together
imply that m = n.

Notation and summary

We often write m | n when m is a factor of n.

With this notation, we can summarise properties of the
“factor” relation as follows. For all positive integers m
and n:

• n | n [reflexive]

• If k | m and m | n then k | n [transitive]

• If m | n and n | m then m = n [anti-symmetric]

Further exercises

Let a, b, c ∈ Z. Prove the following statements.

• a | 0 for all a ∈ Z.

• If a | b and b | a then a = ±b.

• If a | b and a | c then a | (b+ c).

2.3. FINDING ALL FACTORS OF A POSITIVE INTEGER 23

• If a | b then ac | bc.

Is it true that if a | (bc) then either a | b or a | c?
Warning: Do not confuse the statement (or relation)
a | b with the number a/b.

2.3 Finding all factors of a positive integer

Let n be a positive integer. How do we find all factors
of n?

But first, why would we want to find all factors of n?

Secure data transmission (e.g. for internet banking) re-
quires methods of encryption that are impervious to in-
terception.

One of the principal methods (called the ‘RSA algo-
rithm’) uses arithmetic based on integers expressible as
product of two large prime numbers, and the difficulty of
‘cracking’ messages encrypted using this method relies
on the difficulty of factorising large integers (with 300
digits or more). For more discussion see Section 9.4.

Algorithm for finding all factors of a positive in-
teger

For any positive integer n, let Factors(n) denote the set
of all (positive) factors of n.

For example, Factors(90) = {1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90}.
Question: Given n, how do we find Factors(n)?

Simple algorithm — called FindFactors(n):

Given the positive integer n as input,

1. Initialise k = 1;

2. if k > n then stop; otherwise if k | n then output
k;

3. Increment k by 1 (i.e. k ← k + 1), then go to step
2.

Algorithm correctness

An algorithm is called correct if it terminates and satisfies
its specification — that is, if it does what it is expected
to do.

This algorithm terminates after n steps, since k is incre-
mented at each iteration.

Correctness in this case means that the algorithm should
find all factors of n.

Proof of correctness of FindFactors(n):

• If m is a factor of n, then the algorithm outputs m
when step 2 is executed for the mth time (that is,
when k = m), and

• If m is an output of the algorithm, then by step 2
it must be a factor of n.

24 TOPIC 2. INTEGERS AND DIVISIBILITY

These two things ensure that m is an output of the algo-
rithm if and only if m is a factor of m, so the algorithm
is correct.

Lemma 2.1 Let n be any positive integer, and also sup-
pose that n > 1. If k is the smallest factor of n with
k > 1, then k is prime.

For example, the smallest factor of 15 is 3, which is prime.

Proof (by contradiction).

Let k be the smallest factor of n with k > 1. Suppose,
for a contradiction, that k is NOT prime. Then k has
some factor j with 1 < j < k. But now j | k and k | n,
so j | n, and therefore j is a factor of n smaller than
k, and with j > 1. This contradicts the definition of
k. Hence the supposition that k was not prime is false,
which completes the proof.

The Fundamental Theorem of Arithmetic

This theorem is fundamental to the study of integers:
Every integer n > 1 can be written as a product of prime
numbers.

For example, 90 = 2 · 3 · 3 · 5 and 2016 = 25 · 32 · 7.
We will discuss this theorem again in Section 3.2. There
are many ways to prove this. One of them is to prove
the correctness of the following ‘constructive’ algorithm:

Given the integer n > 1 as input,

1. Initialise m = n;

2. Find and output the smallest factor k of m with
k > 1;

3. If k = m then stop; otherwise replace m by m
k , and

go to step 2.

Proof of correctness

The algorithm always terminates, since the value of m
decreases each time that step (3) is executed, unless k =
m.

Next, let the outputs of the algorithm be k1, k2, . . . , ks,
and letm1,m2, . . . ,ms be the corresponding values taken
by m.

By Lemma 2.1 each ki is prime, since it is the smallest
factor of some integer mi greater than 1.

Also m1 = n = k1 ·m2, and then m2 = k2 · m3, and so
on, until ms−1 = ks−1 ·ms, and then ms = ks · 1 = ks.
Thus

n = k1 ·m2 = k1 ·k2 ·m3 = . . . = k1 ·k2 ·k3 ·. . .·ks−2 ·ms−1

= k1 · k2 · k3 · . . . · ks−1 ·ms = k1 · k2 · k3 · . . . · ks−1 · ks,
which gives n as a product of the primes k1, k2, . . . , ks.

2.4. COMMON DIVISORS 25

Example 2.2 Take n = 90. Then the algorithm proceeds
as follows:

• m = 90 [initialisation];

• Output k = 2, and replace m by 90
2 = 45;

• Output k = 3, and replace m by 45
3 = 15;

• Output k = 3, and replace m by 15
3 = 5;

• Output k = 5, and stop [since k = 5 = m].

This algorithm gives 90 = 2 · 3 · 3 · 5.

Example 2.3 Take n = 63756. Then the algorithm pro-
ceeds as follows:

• m = 63756 [initialisation];

• Output k = 2, and replace m by 63756
2 = 31878;

• Output k = 2, and replace m by 31878
2 = 15939;

• Output k = 3, and replace m by 15939
3 = 5313;

• Output k = 3, and replace m by 5313
3 = 1771;

• Output k = 7, and replace m by 1771
7 = 253;

• Output k = 11, and replace m by 253
11 = 23;

• Output k = 23, and stop [since k = 23 = m].

This algorithm gives 63756 = 2 · 2 · 3 · 3 · 7 · 11 · 23.

2.4 Common Divisors

Let m and n be positive integers.

A common divisor of m and n is any (positive) integer k
that divides both m and n.

The greatest common divisor of m and n is the largest
integer k that divides both m and n. It is denoted by
gcd(m,n).

Example 2.4 The divisors of 18 are 1, 2, 3, 6, 9 and 18,
and the divisors of 24 are 1, 2, 3, 4, 6, 8, 12 and 24, and
therefore the common divisors of 18 and 24 are 1, 2, 3
and 6.

The greatest common divisor is gcd(18, 24) = 6

Lemma 2.2 If k is a common divisor of m and n, then
k divides am+ bn for all integers a and b.

26 TOPIC 2. INTEGERS AND DIVISIBILITY

Proof. Since k divides m and n, we know that m = kr
and n = ks for integers r and s. It then follows that

am+ bn = a(kr) + b(ks) = k(ar + bs)

and therefore k divides am+ bn. ✷

As a corollary, also k divides am − bn for all integers
a and b (because we can simply replace b by −b in the
above proof).

Example 2.5 Let m ∈ N be an integer such that m > 0.
Show that gcd(m, 0) = m.

Does gcd(0, 0) make sense?

The Division Theorem (Quotient and Remain-
der)

Let m and n be integers with n > 0. Then there exist
integers q and r such that m = qn+ r, with 0 ! r < n.

The integers q and r are called the quotient and remain-
der of m on division by n, respectively.

Note that the remainder r has to be less than n. Also
note that n is a factor of m if and only if the remainder
r is zero.

Proof: Consider all multiples of n in increasing order,
namely

. . . ,−4n,−3n,−2n,−n, 0, n, 2n, 3n, 4n,

Among these, find the largest multiple qn of n with the
property that qn ! m, and then take r = m− qn.

Then r ≥ 0 (because m ≥ qn), and if r ≥ n then we have
m− qn = r ≥ n, and therefore m ≥ n+ qn = (q + 1)n.

But this shows there is a LARGER multiple (q + 1)n of
n with (q + 1)n ! m, and so contradicts the choice of q.

Thus m = qn+ r, and 0 ! r < n, as required.

Example 2.6 When we divide m = 111 by n = 15 we
get 111 = 7 · 15 + 6, with quotient q = 7 and remainder
r = 6.

2.5 The Euclidean algorithm

This is a fast algorithm for finding greatest common divi-
sors. It was written down by Euclid in about 300BC, and
re-discovered independently in India and China centuries
later.

2.5. THE EUCLIDEAN ALGORITHM 27

Euclidean algorithm

Let the input be positive integers m and n.

The main idea of the algorithm is that if m = qn+r then

gcd(m,n) = gcd(n, r).

Termination of the algorithm is provided by the case
gcd(m, 0) = m.

We give the algorithm in detail:

1. If m < n, then set a = n and b = m;
or if m > n, then set a = m and b = n;
or if m = n, then output n as gcd(m,n) and

stop;

2. Apply the division theorem to find integers q and
r such that a = qb+ r, with 0 ! r < b;

3. If r = 0 then output b as gcd(m,n) and stop; oth-
erwise re-set a = b and then re-set b = r, and go to
step 2.

Example 2.7 Take m = 120 and n = 25. Then proceed
as follows:

1. a = 120 and b = 25 [initialisation]

2. Find 120 = 4·25+20, and re-set a = 25 and b = 20;

3. Find 25 = 1 · 20+ 5, and re-set a = 20 and b = 5;

4. Find 20 = 4 · 5 + 0, output b = 5 and stop [since
r = 0].

This algorithm gives gcd(120, 25) = 5.

Example 2.8 Take m = 148 and n = 784. Then proceed
as follows:

1. a = 784 and b = 148 [initialisation]

2. Find 784 = 5 · 148 + 44, and re-set a = 148 and
b = 44;

3. Find 148 = 3·44+16, and re-set a = 44 and b = 16;

4. Find 44 = 2·16+12, and re-set a = 16 and b = 12;

5. Find 16 = 1 · 12+ 4, and re-set a = 12 and b = 4;

6. Find 12 = 3 · 4 + 0, output b = 4 and stop [since
r = 0].

This algorithm gives gcd(148, 784) = 4.

28 TOPIC 2. INTEGERS AND DIVISIBILITY

Analysis of the Euclidean Algorithm

First, we can observe that the values of a and b decrease
each time that step (3) is executed, except when r = 0,
and it follows that the algorithm always terminates.

Now suppose the algorithm terminates after t steps. We
wish to show that the value output by the algorithm
is the greatest common divisor of the integers a and b.
The simplest way to show this is to write a = bq + r,
where 0 ! r < b, and to note that the correctness of the
algorithm follows from the correctness, at each iteration,
of the statement

gcd(a, b) = gcd(b, r).

Lemma 2.3 Let a, b be positive integers and let a = bq+
r where 0 ! r < b. Then gcd(a, b) = gcd(b, r).

Proof. Consider the sets S1 = {d ∈ P : d | a ∧ d | b} and
S2 = {d ∈ P : d | b ∧ d | r}. So S1 is the set of common
divisors of a and b, while S2 is the set of common divisors
of b and r. We will show that S1 = S2, and hence they
have the same largest element.

So let d ∈ S1. Then d | a and d | b and so by Lemma 2.2
we have that d is a divisor of a− bq = r. Hence d | b and
d | r and so d ∈ S2. Conversely, suppose d ∈ S2. Then
d | b and d | r and so d | (bq + r) = a. So d | a and
d ∈ S1. It follows that S1 = S2. ✷

Extended Euclidean Algorithm

The extended Euclidean algorithm computes not only
the integer d = gcd(a, b), but also integers s, t such that
d = as + bt. These integers are interesting for some
applications. These integers can also be computed by
“reversing” the calculations in Euclid’s algorithm.

Example 2.9 Recall the calculations from Example 2.7.
Working backwards we have

5 = 25− 1 · 20
= 25− 1 · (120− 4 · 25)
= 5 · 25− 1 · 120.

Example 2.10 Using the calculations from Example 2.8
find integers s, t such that 148s+ 784t = 4.

2.6. CONGRUENCES AND MODULAR ARITHMETIC 29

2.6 Congruences and modular arithmetic

Binary arithmetic

The set of integers can be partitioned into two subsets:

Even integers { . . . ,−8,−6,−4,−2, 0, 2, 4, 6, 8, . . . }
Odd integers { . . . ,−7,−5,−3,−1, 1, 3, 5, 7, 9, . . . }

These are the sets of integers that leave remainder 0 or
1 on division by 2, respectively, so we can label them as
[0] and [1].

We can write [0]+ [0] = [0], [0]+ [1] = [1], [1]+ [0] = [1]
and [1] + [1] = [0], to indicate that

• if m is even and n is even then m+ n is even,

• if m is even and n is odd then m+ n is odd,

• if m is odd and n is even then m+ n is odd,

• if m is odd and n is odd then m+ n is even.

Similarly, we write [0]·[0] = [0], [0]·[1] = [0], [1]·[0] = [0]
and [1] · [1] = [1].

Integer congruence

Let m be any integer greater than 1.

We say that two integers a and b are congruent modulo
m, and write a ≡b (mod m), if a and b leave the same
remainder on division by m.

Example 2.11 17 ≡ 37 (mod 10), since both leave re-
mainder 7 on division by 10.

Similarly, a ≡b (mod 2) if and only if a and b are both
even (leaving remainder 0 on division by 2) or both odd
(leaving remainder 1 on division by 2).

Generally, n ≡0 (mod m) if and only if n is a multiple
of m (leaving remainder 0 on division by m).

Example 2.12What are the integers congruent to 1 mod
3?

These are . . . –14, –11, –8, –5, –2, 1, 4, 7, 10, 13,

Note that any two of these differ by a multiple of 3.

For example, 16− 4 = 12 = 3 · 4, and 10− (−8) = 18 =
3 · 6.
In general, we have (3a+1)−(3b+1) = 3a−3b = 3(a−b).

30 TOPIC 2. INTEGERS AND DIVISIBILITY

Theorem 2.1 a ≡ b (mod m) if and only if a − b is a
multiple of m

Proof: Suppose that division by m gives a = qm + r
and b = sm+ t, with remainders r and t (both less than
m). Then we have

a− b = (qm+ r) − (sm+ t) = (q − s)m+ (r − t).

‘Only if ’ part: If a ≡ b (mod m), then by definition,
r = t, and so a− b = (q− s)m, which is a multiple of m.

‘If ’ part: If a− b is a multiple of m, then so is

(a− b)− (q − s)m = r − t.

But 0 ! r < m and 0 ! t < m, so −m < r − t < m.
Since the only multiple of m strictly between −m and
+m is 0, it follows that r − t = 0, so r = t, and thus
a≡b (mod m). ✷

Properties of congruence mod m

• a≡a (mod m) [reflexive]

• If a≡b (mod m) then b≡a (mod m) [symmetric]

• If a ≡ b (mod m) and b ≡ c (mod m) then a ≡ c
(mod m) [transitive]

These are easy to prove from the definition of congruence
mod m (viz. leaving the same remainder on division by
m).

Congruence classes

Let k be any integer greater than 1, and let m be any
integer.

By the division theorem, we have m = qk + r with
0 ! r < k. Then the set of all integers congruent
to m mod k is the set of all integers leaving remainder r
on division by k, namely

. . . ,−3k+r, −2k+r, −k+r, r, k+r, 2k+r, 3k+r,

This set is called the congruence class of m mod k, and
is denoted by [m].

Note that [m] contains m (since m = qk + r). Also
[m] = [r], and more generally, [m] = [n] if and only if
m≡n (mod k).

The number of congruence classes mod k is k

Let k be any integer greater than 1. Then we know that
for any integer m, the congruence class [m] consists of all
integers leaving the same remainder r as m on division
by k, and in particular, [m] = [r], where 0 ! r < k.

2.6. CONGRUENCES AND MODULAR ARITHMETIC 31

It follows that every integer m lies in exactly one of the
k congruence classes [0], [1], [2], . . . , [k−1].

Example 2.13 there are just two congruence classes mod
2, namely

[0] = { . . . ,−8,−6,−4,−2, 0, 2, 4, 6, . . . } even integers

[1] = { . . . ,−7,−5,−3,−1, 1, 3, 5, 7, . . . } odd integers.

Similarly, the ten congruence classes mod 10 are
[0] = { . . . ,−50,−40,−30,−20,−10, 0, 10, 20, 30, 40, . . . }
[1] = { . . . ,−49,−39,−29,−19, −9, 1, 11, 21, 31, 41, . . . }
[2] = { . . . ,−48,−38,−28,−18, −8, 2, 12, 22, 32, 42, . . . }
[3] = { . . . ,−47,−37,−27,−17, −7, 3, 13, 23, 33, 43, . . . }
[4] = { . . . ,−46,−36,−26,−16, −6, 4, 14, 24, 34, 44, . . . }
[5] = { . . . ,−45,−35,−25,−15, −5, 5, 15, 25, 35, 45, . . . }
[6] = { . . . ,−44,−34,−24,−14, −4, 6, 16, 26, 36, 46, . . . }
[7] = { . . . ,−43,−33,−23,−13, −3, 7, 17, 27, 37, 47, . . . }
[8] = { . . . ,−42,−32,−22,−12, −2, 8, 18, 28, 38, 48, . . . }
[9] = { . . . ,−41,−31,−21,−11, −1, 9, 19, 29, 39, 49, . . . }.

The ring of all congruence classes mod k

Any integer n contained in the congruence class [r] is
called a representative of the class.

The set of all congruence classes mod k is denoted by Zk.
In other words,

Zk = {[0], [1], [2], . . . , [k−1]}.
Most books simply write Zk = {0, 1, . . . , k − 1}.
When equipped with addition and multiplication, Zk is
an example of an algebraic structure known as a ‘ring’,
called the ring of integers modulo k, and if p is a prime
number, then Zp is a field. Prime fields are very useful in
constructing error-correcting codes, and in cryptography.

Some more exercises

Fix m ∈ N and let a, b, c, d ∈ Z be such that a ≡ b
(mod m) and c≡d (mod m). Show that

1. a+ c≡b+ d (mod m).

2. ac≡bd (mod m).

32 TOPIC 2. INTEGERS AND DIVISIBILITY

Induction and Recursion

3.1 Induction

The well-ordering property

The following fundamental fact about the set of integers
{0, 1, 2, . . .} is useful for proofs. It leads to the idea of
proof by induction.

Theorem 3.1 (The Well-Ordering Property) Every
nonempty set of nonnegative integers has a least element.

Mathematical induction

Many theorems are that a statement P (n) is true for all
positive integers n (here, P (n) is a predicate or proposi-
tional function). Mathematical induction is a technique
for proving theorems of this kind. In other words, math-
ematical induction is used to prove propositions of the
form ∀nP (n), where the universe of discourse is the set
{0, 1, 2, . . .} of non-negative integers, or sometimes the
set {1, 2, . . .}.
A proof by mathematical induction that P (n) is true for
every positive integer n consists of two steps:

Basis step The proposition P (0) (or sometimes P (1))
is shown to be true.

Inductive step The implication

P (n)→ P (n+ 1)

is shown to be true for every non-negative integer
n.

The inductive hypothesis

Here P (n) is called the inductive hypothesis. When we
complete both steps of a proof by mathematical induc-
tion, we have proved that P (n) is true for all positive
integers n; that is, we have shown that ∀nP (n) is true.

Expressed as a rule of inference, this proof technique can
be stated as

[P (0) ∧ ∀n(P (n)→ P (n+ 1))]→ ∀n ∈ NP (n).

33

34 TOPIC 3. INDUCTION AND RECURSION

How to write a proof by induction

The first step in the proof is to show that P (0) is true.
This amounts to showing that the particular statement
P (n) obtained when n is replaced by 0 is true.

The next step is to show that P (n)→ P (n+1) is true for
every positive integer n. This can be done by assuming
that P (n) is true and showing that under this hypothesis
P (n+ 1) must also be true.

The final step of the proof is to invoke the “principle
of mathematical induction” which implies the theorem
∀n, P (n) is true.

Example 3.1 When doing an inductive proof, think of
a (business) letter format.

Let P (n) be the statement “ . . . ”.

P (m) is true because . . .

Assume P (k), for some k ≥ m, is true:

Here is an argument that P (k + 1)
must be true, assuming that P (k)
is true. . . .

Thus, by the principle of mathematical induc-
tion,

P (n) is true for every integer n ≥ m.

Although we are taking m = 0 in this discussion it is
sometimes convenient to start with m = 1, or m = 2,
etc.

Important remark

In a proof by mathematical induction it is not assumed
that P (n) is true for all positive integers! It is only shown
that if P (n) is true, then P (n + 1) is also true, that
is, P (n) → P (n + 1). Thus, a proof by mathematical
induction is not a circular argument.

When we use mathematical induction to prove a theorem,
we first show that P (0) is true. Then we know that P (1)
is true, since P (0) implies P (1). Further, we know that
P (2) is true, since P (1) implies P (2). Continuing along
these lines, we see that P (k) is true, for any positive
integer k.

The domino illustration

A way to illustrate the principle of mathematical induc-
tion is to consider an infinite row of dominoes, labelled
1, 2, 3, . . . , n, where each domino is standing up. Let
P (n) be the proposition that domino n is knocked over.
If P (1) is true (meaning: the first domino is knocked

3.1. INDUCTION 35

over), and if P (n) → P (n + 1) is true (meaning: if the
n-th domino is knocked over then it also knocks over the
(n + 1)-th domino), then all the dominoes are knocked
over.

Why mathematical induction is valid

The validity of mathematical induction as a proof tech-
nique comes from the well-ordering property of the nat-
ural numbers.

Suppose we know that P (0) is true and that the propo-
sition P (n) → P (n + 1) is true for all positive integers
n. To show that P (n) must be true for all positive in-
tegers, assume that there is at least one positive integer
for which P (n) is false.

• Then the set S of non-negative integers for which
P (n) is false is nonempty.

• Thus, by the well-ordering property, S has a least
element, which will be denoted by k. We know that
k cannot be 0 since P (0) is true.

• Since k is positive and greater than 1, k − 1 is a
positive integer.

• Furthermore, since k − 1 is less than k, it is not in
S, so P (k − 1) must be true.

• Since the implication P(k− 1)→ P (k) is also true,
it must be the case that P (k) is true. This contra-
dicts the choice of k.

• Hence, P (n) must be true for every positive integer
n.

We will use a variety of examples to illustrate how the-
orems are proved using mathematical induction. (Many
theorems proved in this section via mathematical induc-
tion can be proved using different methods. However, it
is worthwhile to try to prove a theorem in more than one
way, since one method of attack may succeed whereas
another approach may not.)

Summation example

Mathematical induction is often used to verify summa-
tion formulae.

Example 3.2 Use mathematical induction to prove that
the sum of the first n odd positive integers is n2.

Solution.

Let P (n) denote the proposition that the sum of the first n odd
positive integers is n2.

36 TOPIC 3. INDUCTION AND RECURSION

Basis step: P (0) is the claim that the sum of the first zero odd
positive integers is 02 = 0. This is true.

Some students may be more comfortable starting with n = 1
in this case. P (1) states that the sum of the first odd positive
integer is 12. This is true since the sum of the first odd
positive integer is 1.

Inductive step: Show that P (n) → P (n+ 1) is true ∀n ∈ Z+.
Suppose that P (n) is true for a positive integer n; that is

1 + 3 + 5 + · · ·+ (2n − 1) = n2

(Note that the nth odd positive integer is (2n − 1), since
this integer is obtained by adding 2 a total number of n − 1
times to 1). We must show that P (n+1) is true, assuming
that P (n) is true. Note that P (n+ 1) is the statement that

1 + 3 + 5 + · · ·+ (2n − 1) + (2n+ 1) = (n+ 1)2

So, assuming that P (n) is true, it follows that
1 + 3 + 5 + · · ·+ (2n − 1) + (2n+ 1)

= [1 + 3 + 5 + · · ·+ (2n − 1)] + (2n+ 1)
= n2 + (2n+ 1)
= (n+ 1)2

This shows that P (n+ 1) follows from P (n). Note that we
used the inductive hypothesis P (n) in the second equality to
replace the sum of the first n odd positive integers by n2.
Since P (1) is true and the implication P (n) → P (n + 1)
is true ∀n ∈ Z+, the principle of mathematical induction
shows that P (n) is true for all positive integers n.

Example 3.3 Use mathematical induction to show that

1 + 2 + 22 + · · ·+ 2n = 2n+1 − 1

for all nonnegative integers n.

Inequality example

The next example uses the principle of mathematical in-
duction to prove an inequality.

Example 3.4 Use mathematical induction to prove the
inequality

n < 2n

for all positive integers n.

Divisibility examples

Example 3.5 Let x be a fixed integer. Use mathematical
induction to prove that, for all integers n ≥ 1,

xn − 1 = (x− 1)(xn−1 + xn−2 + · · ·+ x+ 1).

[Hint: xn+1 − 1 = (x− 1)xn + (xn − 1).]

3.1. INDUCTION 37

Example 3.6 Use mathematical induction to prove that
n3−n is divisible by 3 whenever n is a positive integer.

Number of subsets example

Example 3.7 Use mathematical induction to show that
if S is a finite set with n elements, then S has 2n subsets.

Factorial example

Example 3.8 Use mathematical induction to prove that
2n < n! for every positive integer n with n ≥ 4.

Geometric examples

Example 3.9 Let n be a positive integer. Show that
any 2n × 2n chessboard with one square removed can be
tiled using L-shaped pieces, where these pieces cover three
squares at a time.

Example 3.10 A finite number of straight lines divides
the plane into regions. Prove that these regions can be
coloured using two colours so that adjacent regions (i.e.,
regions that meet in more than just one corner) do not
have the same colour.

Basis at other than 0 or 1

Sometimes we need to show that P (n) is true for n =
k, k+1, k+2, . . ., where k is an integer other than 0 or 1.
We can use mathematical induction to accomplish this
as long as we change the basis step.

38 TOPIC 3. INDUCTION AND RECURSION

Example 3.11 Prove using induction that if n > 4 is an
integer then n2 > n+ 16.

3.2 The second principle of mathematical
induction

There is another form of mathematical induction that is
often useful in proofs. With this form we use the same
basis step as before, but we use a different inductive step.
We assume that P (k) is true for all values k = 1, . . . , n
and show that P (n+ 1) must also be true based on this
assumption. This is called the second principle of math-
ematical induction. We summarize the two steps used to
show that P (n) is true for all positive integers n:

Basis step: The proposition P (1) is shown to be true.

Inductive step: It is shown that

[P (1) ∧ P (2) ∧ · · · ∧ P (n)]→ P (n+ 1)

is true for every positive integer n.

The two forms of mathematical induction are equivalent;
that is, each can be shown to be a valid proof technique
assuming the other. We leave it as an exercise for the
student to show this.

Example 3.12 Show that if n is an integer greater than
1, then n can be written as the product of primes.

Solution.

Let P (n) denote the proposition that n can be written as a product
of primes.

Basis step: P (2) is true since it can be written as the product of
one prime, itself.

Inductive step: Assume that P (k) is true for all positive inte-
gers k with k ≤ n. To complete the inductive step it must be
shown that P (n + 1) is true under this assumption. There
are two cases to consider, namely, when n+1 is prime and
when n + 1 is composite. If n + 1 is prime then we can
immediately see that P (n + 1) is true. Otherwise n + 1 is
composite and thus can be written as a product of two pos-
itive integers a and b with 2 ≤ a ≤ b < n + 1. By the
induction hypothesis, both a and b can be written as the
product of primes. Thus, if n+ 1 is composite, then it can
be written as the product of primes, namely, those primes
in the factorizations of a and b.

Example 3.13 Prove that every amount of postage of 12
cents or more can be formed using just 4-cent and 5-cent
stamps.

3.3. LOOP INVARIANT THEOREM 39

3.3 Loop invariant theorem

Consider a segment of computer program of the form

While G do B

The condition G is called the guard and B is called the
body. An iteration of the loop is one execution of B. The
loop terminates when the guard condition becomes false.

A statement S is a loop invariant if, whenever S is true
before an iteration, S remains true after the iteration.

Example 3.14 The following is an inefficient algorithm
to compute the quotient and remainder:

Input: m,n ∈ P

1. Set q = 0 and r = n

2. While (r ≥ m) do

• q = q + 1

• r = r −m

Let S be the statement n = mq+r. Then S is true at the
beginning of the loop and S stays true through the body
of the loop.

Theorem 3.2 (Loop invariant theorem) Let S be an in-
variant of the loop “while G do B”. Suppose S is true on
the first entry into the loop. Then S stays true at every
iteration of the loop, and if the loop terminates then S is
true after the last iteration.

3.4 Recursive definitions

Sometimes it is difficult to define an object explicitly.
However, it may be easy to define this object in terms of
itself. This process is called recursion.

We can use recursion to define sequences, functions, and
sets. In previous discussions, we specified the terms of a
sequence using an explicit formula.

Example 3.15 The sequence of powers of 2 is given by
an = 2n for n = 0, 1, 2, However, this sequence can
also be defined by giving the first term of the sequence,
namely, a0 = 1, and a rule for finding a term of the
sequence from the previous one, namely, an+1 = 2an for
n = 0, 1, 2,

40 TOPIC 3. INDUCTION AND RECURSION

Recursively defined functions

To define a function with the set of nonnegative integers
as its domain,

1. Specify the value of the function at zero (and pos-
sibly 1, 2, . . .).

2. Give a rule for finding its value at an integer from
its values at smaller integers.

Such a definition is called a recursive or iterative or in-
ductive definition.

Example 3.16 Suppose that f is defined recursively by

f(0) = 3,

f(n+ 1) = 2f(n) + 3.

Find f(1), f(2), f(3), and f(4).

Example 3.17 Give an inductive definition of the fac-
torial function F (n) = n!.

Specifying the first few values of a function

In some recursive definitions of functions, the values of
the function at the first k positive integers are specified,
and a rule is given for the determining the value of the
function at larger integers from its values at some or all
of the preceding k integers.

Example 3.18 The Fibonacci numbers, f0, f1, f2, . . . ,
are defined by the equations f0 = 0, f1 = 1, and

fn = fn−1 + fn−2

for n = 2, 3, 4, What are the Fibonacci numbers
f2, f3, f4, f5, f6?

Example 3.19 Show that fn > αn−2, where
α = (1 +

√
5)/2, whenever n ≥ 3.

(Hint: first show that α2 = 1 + α)

3.5.* RECURRENCE RELATIONS 41

3.5 * Recurrence relations

Consider the following type of counting problem:

Example 3.20 How many bit strings of length n do not
contain two consecutive zeros?

Example 3.21 The number of bacteria in a colony dou-
bles every hour. If a colony begins with five bacteria, how
many will be present in n hours?

Recurrence relations introduction

In the previous section we discussed how sequences can
be defined recursively. Recursive definitions can be used
to solve counting problems. When they are, the rule for
finding terms from those that precede them is called a
recurrence relation.

Definition 3.1 A recurrence relation for the sequence
{an} is a formula that expresses an in terms of one or
more of the previous terms of the sequence, namely,
a0, a1, . . . , an−1, for all integers n with n ≥ n0, where n0

is a nonnegative integer.

A sequence is called a solution of a recurrence relation if
its terms satisfy the recurrence relation.

Example 3.22 Let {an} be a sequence that satisfies the
recurrence relation an = an−1 − an−2 for n = 2, 3, 4, . . .,
and suppose that a0 = 3 and a1 = 5. What are a2 and
a3?

Example 3.23 Determine whether the sequence {an} is
a solution of the recurrence relation an = 2an−1 − an−2
for n = 2, 3, 4, . . ., where an = 3n for every nonnegative
integer n. Answer the same question where an = 2n and
where an = 5.

Initial conditions

The initial conditions for a sequence specify the terms
that precede the first term where the recurrence relation
takes effect.

42 TOPIC 3. INDUCTION AND RECURSION

The recurrence relation and initial conditions uniquely
determine a sequence. This is the case since a recurrence
relation, together with initial conditions, provide a recur-
sive definition of the sequence. Any term of the sequence
can be found from the initial conditions using the re-
currence relation a sufficient number of times. However,
there are better ways for computing the terms of certain
classes of sequences defined by recurrence relations and
initial conditions.

We can use recurrence relations to model a wide variety
of problems, such as finding compound interest, counting
rabbits an island, determining the number of moves in
the tower of Hanoi puzzle, and counting bit strings with
certain properties.

Compound interest

Example 3.24 Suppose that a person deposits $10,000
in a savings account at a bank yielding 11% per year with
interest compounded annually. How much will be in the
account after 30 years?

Rabbits and the Fibonacci numbers

The next example shows how the population of rabbits
on an island can be modelled using a recurrence relation.

Example 3.25 Consider the following problem, which
was originally posed by Leonardo di Pisa, also known as
Fibonacci, in the 13th century in his book Liber abaci.
A young pair of rabbits (one of each sex) is placed on
an island. A pair of rabbits does not breed until they are
two months old. After they are two months old, each
pair of rabbits produces another pair each month. Find a
recurrence relation for the number of pairs of rabbits on
the island after n months, assuming that no rabbits ever
die.

The towers of Hanoi

The next example involves a famous puzzle.

Example 3.26 A popular puzzle of the late 19th cen-
tury, called the Towers of Hanoi, consists of three pegs
mounted on a board together with discs of different sizes.

Initially these discs are placed on the first peg in order
of size, with the largest on the bottom. The rules of the
puzzle allow discs to be moved one at a time from one
peg to another as long as a disc is never placed on top of
a smaller disc.

3.6.* SOLVING RECURRENCE RELATIONS 43

The goal of the puzzle is to have all the discs on the
second peg in order of size, with the largest on the bottom.

Let Hn denote the number of moves needed to solve the
Towers of Hanoi problem with n discs. Set up a recur-
rence relation for the sequence {Hn}.

Non-consecutive 0’s

Example 3.27 Find a recurrence relation and give ini-
tial conditions for the number of bit strings of length n
that do not have two consecutive 0’s. How many such bit
strings are there of length five?

Codewords

The next example shows how a recurrence relation can
be used to model the number of codewords that are al-
lowable using certain validity checks.

Example 3.28 A computer system considers a string
of decimal digits a valid codeword if it contains an even
number of 0 digits. For instance, 1230407869 is valid,
whereas 120987045608 is not valid.

Let an be the number of valid n-digit codewords. Find a
recurrence relation for an.

3.6 * Solving recurrence relations

A wide variety of recurrence relations occur in models.
Some of these recurrence relations can be solved using
iteration or some other ad hoc technique. However, one
important class of recurrence relations can be explicitly
solved in a systematic way. These are recurrence rela-
tions that express the terms of a sequence as linear com-
binations of previous terms.

Linear homogeneous recurrence relations

Definition 3.2 A linear homogeneous recurrence rela-
tion of degree k with constant coefficients is a recurrence
relation of the form

an = c1an−1 + c2an−2 + · · ·+ ckan−k

where c1, c2, . . . , ck are real numbers, and ck ̸= 0.

44 TOPIC 3. INDUCTION AND RECURSION

The recurrence relation in the definition is linear since
the right-hand side is a sum of constant multiples of the
previous terms of the sequence. The recurrence relation
is homogeneous since no terms occur that are not mul-
tiples of the aj’s. The coefficients of the terms of the
sequence are all constants, rather than functions that
depend on n. The degree is k because an is expressed in
terms of the previous k terms of the sequence.

A consequence of the second principle of mathematical
induction is that a sequence satisfying the recurrence re-
lation in the definition is uniquely determined by this
recurrence relation and the k initial conditions

a0 = C0, a1 = C1, . . . , ak−1 = Ck−1.

Linear homogeneous recurrence relations are studied for
two reasons. First, they often occur in modelling of prob-
lems. Second, they can be systematically solved.

3.6.1 Solving linear homogeneous recurrence re-
lations

The basic approach for solving linear homogeneous re-
currence relations is to look for solutions of the form
an = rn, where r is a constant. Note that an = rn is a
solution of the recurrence relation

an = c1an−1 + c2an−2 + · · ·+ ckan−k

if and only if

rn = c1r
n−1 + c2r

n−2 + · · ·+ ckr
n−k.

Characteristic equation

When both sides of this equation are divided by rn−k

and the right-hand side is subtracted from the left, we
obtain the equivalent equation

rk − c1r
k−1 − c2r

k−2 − · · ·− ck−1r − ck = 0.

Consequently, the sequence {an} with an = rn is a so-
lution if and only if r is a solution of this last equation,
which is called the characteristic equation of the recur-
rence relation. The solutions of this equation are called
the characteristic roots of the recurrence relation. As we
will see, these characteristic roots can be used to give
an explicit formula for all the solutions of the recurrence
relation.

Linear homogeneous recurrence relations of de-
gree two: distinct roots

We now turn our attention to linear homogeneous recur-
rence relations of degree two. First, consider the case
when there are two distinct characteristic roots.

Theorem 3.3 Let c1 and c2 be real numbers. Suppose
that r2 − c1r − c2 = 0 has two distinct roots r1 and r2.

3.6.* SOLVING RECURRENCE RELATIONS 45

Then the sequence {an} is a solution of the recurrence
relation

an = c1an−1 + c2an−2

if and only if an = β1rn1 + β2rn2 for n = 0, 1, 2, . . ., where
β1 and β2 are constants.

Proof: See lecture.

The actual procedure for solving the recurrence relation

an = c1an−1 + c2an−2

with initial values a0 and a1 is the following (provided
that the roots of the characteristic equation are distinct.):

Step 1 : Identify the characteristic polynomial p(x) and
find its roots r1 and r2

Step 2 : If r1 ̸= r2 then the general solution is of the
form

an = β1r
n
1 + β2r

n
2

where β1 and β2 are constants.

Step 3 : Determine the values of β1 and β2 by using
the initial conditions a0 and a1.

Example 3.29 Solve the recurrence relation

an+2 + 2an+1 − 3an = 0

with initial values a0 = 1 and a1 = −1.

Solution.

Step 1 Determine the characteristic equation by substituting
an = rn and factoring out rn

rn+2 + 2rn+1 − 3rn = 0
r2 + 2r − 3 = 0

(r + 3)(r − 1) = 0
Take r1 = − 3 and r2 = 1.

Step 2 The general solution is

an = β1(− 3)n + β2(1)
n

Step 3 Using the initial values a0 = 1 and a1 = − 1 we obtain
a0 = 1 = β1 + β2 (n = 0)
a1 = − 1 = β2 − 3β1 (n = 1)

and this gives us β1 = β2 = 1
2 .

Thus an = 1
2 + 1

2 (− 3)n, n ≥ 0 is the unique solution to
the given recurrence relation.

Example 3.30 What is the solution of the recurrence
relation

an = an−1 + 2an−2

with a0 = 2 and a1 = 7?

Example 3.31 Find an explicit formula for the Fibonacci
numbers.

46 TOPIC 3. INDUCTION AND RECURSION

Linear homogeneous recurrence relations of de-
gree two: one root of multiplicity two

Theorem 4.2 does not apply when there is one character-
istic root of multiplicity two. This case can be handled
using the following theorem.

Theorem 3.4 Let c1 and c2 be real numbers with c2 ̸= 0.
Suppose that r2 − c1r − c2 = 0 has only one root r1.
A sequence {an} is a solution of the recurrence relation
an = c1an−1 + c2an−2 if and only if an = β1rn1 + β2nrn1 ,
for n = 0, 1, 2, . . ., where β1 and β2 are constants.

The actual procedure for solving the recurrence relation

an = c1an−1 + c2an−2

with initial values a0 and a1 is the following (provided
that the roots of the characteristic equation are not dis-
tinct):

Step 1 : Identify the characteristic polynomial p(x) and
find its roots r1 and r2

Step 2 : If r1 = r2 then the general solution is of the
form

an = β1r
n
1 + β2nr

n
1 = (β1 + nβ2)r

n
1

where β1 and β2 are constants.

Step 3 : Determine the values of β1 and β2 by using
the initial conditions a0 and a1.

Example 3.32 Solve the recurrence relation

an + 2an−1 + an−2 = 0

with initial values a0 = 1 and a1 = −3.

Example 3.33 What is the solution of the recurrence
relation

an = 6an−1 − 9an−2

with initial conditions a0 = 1 and a1 = 6?

Graphs

The subject of graph theory was initiated by Leonhard
Euler. He used it to solve the famous Königsberg bridge
problem, which we will discuss later in this chapter.

Graph theory has turned out to be an important tool for
solving problems in many fields. For example, one can
model the internet by representing webpages as dots and
hyperlinks as arrows from one dot to another. Google’s
PageRank algorithm was developed by Larry Page and
Sergey Brin using ideas from graph theory. Social net-
works and power infrastructures can also be represented
as graphs. By analysing the graph one can determine
which nodes have the most influence, or one can evaluate
the vulnerability of a network against failure or attack.
Facebook and other social network companies use infor-
mation obtained from the graph as a marketing tool and
for offering improved services. Problems such as find-
ing the shortest tour through a number of cities can be
expressed and solved using graph theory, and are a key
component of GPS-based navigation systems. There are
many more applications.

4.1 Introduction to graphs

Graphs are discrete structures formed of dots (called ver-
tices) and lines (called “edges” or “arcs”) that run be-
tween the vertices.

Examples of graphs

Example 4.1 A simple example of a graph is the follow-
ing representation of roads between some towns in New
Zealand. In such a picture we are not concerned with the
roads within the towns, so it suffices to represent each
town as a single dot, or vertex. Similarly, we are not
concerned with the length of the road, or the exact route
it takes across the land. So it suffices to represent the
road with a single line.

Note that all the roads are two-way roads (can drive from
Auckland to Hamilton or from Hamilton to Auckland
along the same road).

47

48 TOPIC 4. GRAPHS

Auckland

Tauranga

Marton

Napier

Wellington

Palmerston North

Hamilton

Example 4.2 Now suppose the above graph is not a
graph of roads, but of fibre optic cables between some
computer data centres in these towns. Each data cen-
tre is represented by a vertex, and each optical cable by
an edge.

Note that there is at most one cable between two comput-
ers in this network and that each cable operates in both
directions. In other words, this network can be modeled
using a simple graph.

Definition 4.1 A simple graph G = (V,E) consists of
V , a nonempty set of vertices, and E, a set of unordered
pairs of distinct elements of V called edges.

Multigraphs

Sometimes there are multiple optical cables between com-
puters in a network. This is the case when there is heavy
traffic between computers. A network with multiple lines
is displayed below. Simple graphs may not be sufficient
to model such networks. Instead, multigraphs are used,
which consist of vertices and undirected edges between
these vertices, with multiple edges between pairs of ver-
tices allowed.

Every simple graph is also a multigraph. However, not
all multigraphs are simple graphs, since in a multigraph
two or more edges may connect the same pair of vertices.

4.1. INTRODUCTION TO GRAPHS 49

Example 4.3 The following is a multigraph. Note that
we label the edges, so that c and d are both edges from
Auckland to Marton, representing different cables from
Auckland to Marton data centres.

Auckland

Tauranga

Marton

Napier

Wellington

a b

g f
e

Palmerston North

Hamilton

cd

We cannot use a pair of vertices to specify an edge of a
graph when multiple edges are present. This makes the
formal definition of multigraphs somewhat complicated.

Definition 4.2 A Multigraph G = (V,E) consists of a
set V of vertices, a set E of edges, and a function f from
E to {{u, v}|u, v ∈ V, u ̸= v} . The edges e1 and e2 are
called multiple or parallel edges if f(e1) = f(e2).

Loops and pseudographs

Example 4.4 A graph may contain edges between a ver-
tex and itself. These are called loops. The definitions
above for graphs and multigraphs do not allow loops, so
we define pseudographs below. The following image has
some loops added to the previous graph.

50 TOPIC 4. GRAPHS

Auckland

Tauranga

Marton

Napier

Wellington

a b

c

g f
e

Hamilton d

x

y

Palmerston North

Definition 4.3 A pseudograph G = (V,E) consists of a
set V of vertices, a set E of edges, and a function f from
E to {{u, v}|u, v ∈ V }. An edge is a loop if f(e) = {u, u}
for some u ∈ V .

We often say “{u, v} is an edge of G” for a graph G =
(V,E) if there is at least one edge e with f(e) = {u, v}.

To summarize, pseudographs are the most general type of
undirected graphs since they may contain loops and mul-
tiple edges. Multigraphs are undirected graphs that may
contain multiple edges but may not have loops. Finally,
simple graphs are undirected graphs with no multiple
edges or loops.

Directed graphs

Example 4.5 The optical cables in a computer network
may not operate in both directions. For instance, in the
following graph, the host computer in Auckland can only

4.1. INTRODUCTION TO GRAPHS 51

send data to Marton.

Auckland

Tauranga

Marton

Napier

Wellington

Hamilton

Palmerston North

We use directed graphs to model such networks. The
edges of a directed graph are ordered pairs rather than
sets. Loops, ordered pairs of the same element, are al-
lowed, but multiple edges in the same direction between
two vertices are not.

Definition 4.4 A directed graph (V,E) consists of a set
of vertices V and a set of edges E that are ordered pairs
of elements of V .

Directed multigraphs

Example 4.6 There may be several one-way fibre cables
between two data centres. Such a network is shown next.

52 TOPIC 4. GRAPHS

Tauranga

Marton

Napier

Wellington

Auckland

Palmerston North

Hamilton

Directed graphs are not sufficient for modeling such a
network, since multiple edges are not allowed in these
graphs. Instead we use directed multigraphs.

Definition 4.5 A directed multigraph G = (V,E) con-
sists of a set V of vertices, a set E of edges, and a
function f from E to {(u, v)|u, v ∈ V } . The edges e1
and e2 are multiple edges if f(e1) = f(e2).

As before, we will say that (u, v) is an edge of G = (V,E)
as long as there is at least one edge e with f(e) = (u, v).
We will often interchangeably use the edge e and the
ordered pair (u, v) associated to it, unless the identity of
individual multiple edges is important.

Example 4.7 We give one more example of a directed
graph. Let G = (V,E) where V = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
and the set E of edges is

E = {(0, 1), (0, 2), (0, 3), (2, 2), (2, 4), (3, 4), (3, 5), (4, 0),
(5, 6), (5, 8), (6, 8), (7, 9), (8, 6), (8, 7), (9, 8)}.

Then the graph is pictured below.

4.2. BASIC TERMINOLOGY 53

Summary of terminology

The definitions of the various types of graphs are sum-
marized in Table 4.1.

Graph theory has been applied and developed in a wide
range of subjects and applications. Hence, the termi-
nology is not completely standard. When reading other
books and webpages you should be careful that the no-
tions “graph” and “multigraph” may have slightly differ-
ent meanings.

Table 4.1: Graph Terminology
Type Edges Multiple Edges Allowed? Loops Allowed?

Simple graph Undirected No No
Multigraph Undirected Yes No
Pseudograph Undirected Yes Yes
Directed graph Directed No Yes

Directed multigraph Directed Yes Yes

4.2 Basic terminology

We introduce some basic vocabulary used in graph the-
ory.

Terminology on vertices and edges

Definition 4.6 Two vertices u and v in an undirected
graph G are called adjacent (or neighbors) in G if {u, v}
is an edge of G. If e = {u, v}, the edge e is called incident
with the vertices u and v. The edge e is also said to con-
nect u and v. The vertices u and v are called endpoints
of the edge {u, v}.

Degree

To keep track of how many edges are incident to a vertex,
we make the following definition.

Definition 4.7 The degree of a vertex in an undirected
graph is the number of edges incident with it, except that
a loop at a vertex contributes twice to the degree of that
vertex. The degree of the vertex v is denoted by deg(v).

54 TOPIC 4. GRAPHS

Example 4.8 What are the degrees of the vertices in the
graphs G and H?

f e g

dcb

a

G

a b c

de f

H

The handshaking theorem

Every edge is incident with exactly two (possibly equal)
vertices. Hence, the sum of the degrees of the vertices
is twice the number of edges. This result is sometimes
called the Handshaking Theorem, because of the analogy
between an edge having two endpoints and a handshake
involving two hands.

Theorem 4.1 [The Handshaking Theorem] Let G = (V,E)
be an undirected graph with |E| edges. Then

2|E| =
∑

v∈V
deg(v)

(Note this applies even if multiple edges and loops are
present.)

Proof: See lecture.

Example 4.9 How many edges are there in a graph with
10 vertices each of degree 6?

Theorem 4.1 shows that the sum of the degrees of the
vertices of an undirected graph is even. This simple fact
has many consequences, one of which is given as Theo-
rem 4.2.

Theorem 4.2 An undirected graph has an even number
of vertices of odd degree.

Proof: See lecture.

4.2. BASIC TERMINOLOGY 55

Terminology for directed graphs

We now give some useful terminology for graphs with
directed edges.

Definition 4.8 When (u, v) is an edge of the graph G
with directed edges, u is said to be adjacent to v and v
is said to be adjacent from u. The vertex u is called the
initial vertex of (u, v), and v is called the terminal or end
vertex of (u, v). The initial vertex and terminal vertex of
a loop are the same. We say an edge (u, v) is outgoing
from u and ingoing to v.

In-degree and out-degree

Definition 4.9 In a graph with directed edges the in-
degree of a vertex v, denoted by deg−(v), is the number
of edges with v as their terminal vertex. The out-degree
of v, denoted by deg+(v), is the number of edges with
v as their initial vertex. (Note that a loop at a vertex
contributes 1 to both the in-degree and the out-degree of
this vertex.)

56 TOPIC 4. GRAPHS

Example 4.10 Find the in-degree and out-degree of each
vertex in the graph G with directed edges shown below.

ba

fe d

c

Since each edge has an initial vertex and a terminal ver-
tex, the sum of the in-degrees and the sum of the out-
degrees of all vertices in a graph with directed edges are
the same. Both of these sums are the number of edges in
the graph. This result is stated as the following theorem.

Theorem 4.3 Let G = (V,E) be a graph with directed
edges. Then

∑

v∈V
deg−(v) =

∑

v∈V
deg+(v) = |E|.

Underlying graph

There are many properties of a graph with directed edges
that do not depend on the direction of its edges. Conse-
quently, it is often useful to ignore these directions. The
undirected graph that results from ignoring directions of
edges is called the underlying undirected graph. A graph
with directed edges and its underlying undirected graph
have the same number of edges.

We will now introduce several classes of simple graphs.
These graphs are often used as examples and arise in
many applications.

4.2. BASIC TERMINOLOGY 57

Complete graphs

The complete graph on n vertices, denoted by Kn, is
the simple graph that contains exactly one edge between
each pair of distinct vertices. The graphs Kn, for n =
1, 2, 3, 4, 5, 6 are displayed below.

K5
K6

K1

K2 K3 K4

Cycle graphs

The cycle graphCn, n ≥ 3, consists of n vertices v1, v2, . . . , vn
and edges {v1, v2}, {v2, v3}, . . . , {vn−1, vn} and {vn, v1}.
The cycle graphs C3, C4, C5, and C6 are displayed below.

C3 C4 C5 C6

n-Cubes

The n-cube, denoted by Qn is the graph that has vertices
representing the 2n bit strings of length n. Two vertices

58 TOPIC 4. GRAPHS

are adjacent if and only if the bit strings that they repre-
sent differ in exactly one bit position. The graphsQ1, Q2,
and Q3 are displayed below.

Q1 Q2 Q3

Bipartite graphs

Sometimes a graph has the property that its vertex set
can be divided into two disjoint subsets such that each
edge connects a vertex in one of these subsets to a vertex
in the other subset. For example, consider the graph
representing all the students in this class and the set of
courses they are taking. We draw an edge between a
student and a course if the student is taking that course.
The vertex set is the union S ∪ C where S is the set of
students and C is the set of courses.

Definition 4.10 A simple graph G is called bipartite
if its vertex set V can be partitioned into two disjoint
nonempty sets V1 and V2 such that every edge in the
graph connects a vertex in V1 and a vertex in V2 (so that
no edge in G connects either two vertices in V1 or two
vertices in V2).

Example 4.11 Show that C6 is bipartite.

Example 4.12 Show that K3 is not bipartite.

4.2. BASIC TERMINOLOGY 59

Example 4.13 Are the graphs G and H displayed below
bipartite?

G

H

Complete bipartite graphs

The complete bipartite graph Km,n is the graph that has
its vertex set partitioned into two subsets of m and n
vertices, respectively. There is an edge between two ver-
tices if and only if one vertex is in the first subset and
the other vertex is in the second subset.

Example 4.14 The complete bipartite graphs K2,3 and
K3,3 are displayed below.

K3,3

K2,3

60 TOPIC 4. GRAPHS

Union of two graphs

Two or more graphs can be combined in various ways.
The new graph that contains all the vertices and edges
of these graphs is called the union of the graphs. We will
give a more formal definition for the union of two simple
graphs.

Definition 4.11 The union of two simple graphs G1 =
(V1, E1) and G2 = (V2, E2) is the simple graph with ver-
tex set V1∪V2 and edge set E1∪E2. The union of G1 and
G2 is denoted by G1∪G2. (Note: we assume V1∩V2 = ∅.)

Example 4.15 Find the union of the graphs G1 and G2

shown below.

G1 G2

4.3 Representing graphs

There are many useful ways to represent graphs. When
working with graphs, it is helpful to be able to choose the
most convenient representation. In this section we will
show how to represent graphs in several different ways.

Sometimes, two graphs have exactly the same structure,
in the sense that there is a one-to-one correspondence
between their vertex sets that preserves edges. In such a
case, we say that the two graphs are isomorphic. Deter-
mining whether two graphs are isomorphic is an impor-
tant problem of graph theory that we will study in this
section.

Adjacency lists

One way to represent a graph without multiple edges is to
list all the edges of this graph. Another way to represent
a graph with no multiple edges is to use adjacency lists ,
which specify the vertices that are adjacent to each vertex
of the graph.

4.3. REPRESENTING GRAPHS 61

Example 4.16 Use adjacency lists to describe the simple
graph given below.

a b

c d

Example 4.17 Represent the directed graph shown below
by listing all the vertices that are the terminal vertices of
edges starting at each vertex of the graph.

dc

a b

Adjacency matrices

Carrying out graph algorithms using the representation
of graphs by lists of edges, or by adjacency lists, can be
cumbersome if there are many edges in the graph. To
simplify computation, graphs can be represented using
matrices. Two types of matrices commonly used to rep-
resent graphs will be presented here. One is based on the
adjacency of vertices, and the other is based on incidence
of vertices and edges.

Suppose that G = (V,E) is a simple graph where |V | =
n. Suppose that the vertices ofG are listed as v1, v2, . . . , vn.
The adjacency matrix A (or AG) of G with respect to this
listing of the vertices, is the n× n zero-one matrix with
1 as its (i, j)th entry when vi and vj are adjacent, and 0
as its (i, j)th entry when they are not adjacent. In other
words, if its adjacency matrix is A = [aij], then

aij =

{
1 if {vi, vj} is an edge of G
0 otherwise

62 TOPIC 4. GRAPHS

Note that an adjacency matrix of a graph is based on the
ordering chosen for the vertices. Hence, there are poten-
tially as many as n! different adjacency matrices for a
graph with n vertices, since there are n! different order-
ings of n vertices. However, once a listing v1, v2, . . . , vn
of the vertices has been decided, the adjacency matrix is
uniquely determined by the graph.

The adjacency matrix of a simple graph is symmetric,
meaning that aij = aji, since both of these entries are 1
when vi and vj are adjacent, and both are 0 otherwise.
Furthermore, since a simple graph has no loops, each
entry aii, i = 1, 2, 3, . . . , n, is 0.

Example 4.18 Use an adjacency matrix to represent the
graph shown below.

a b

cd

Example 4.19 Draw a graph with the adjacency matrix

⎡

⎢⎢⎣

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎤

⎥⎥⎦ .

Adjacency matrices can also be used to represent undi-
rected graphs with loops and with multiple edges. A
loop at the vertex vi is represented by a 1 at the (i, i)th
position of the adjacency matrix. When multiple edges
are present, the adjacency matrix is no longer a zero-one
matrix, since the (i, j)th entry of this matrix equals the
number of edges that are associated to {vi, vj}. All undi-
rected graphs, including multigraphs and pseudographs,
have symmetric adjacency matrices.

4.3. REPRESENTING GRAPHS 63

Example 4.20 Use an adjacency matrix to represent the
pseudograph shown below.

a b

d c

The adjacency matrix for a directed graph does not have
to be symmetric, since there may not be an edge from
vj to vi when there is an edge from vi to vj . Adjacency
matrices can also be used to represent directed multi-
graphs. Again, such matrices are not zero-one matrices
when there are multiple edges in the same direction con-
necting two vertices In the adjacency matrix for a di-
rected multigraph, aij equals the number of edges that
are associated to (vi, vj).

Incidence matrices

Another common way to represent graphs is to use in-
cidence matrices . Let G = (V,E) be an undirected
graph. Suppose that v1, v2, . . . , vn are the vertices and
e1, e2, . . . , em are the edges of G. Then the incidence ma-
trix with respect to this ordering of V and E is the n×m
matrix M = [mij] where

mij =

{
1 if ej is is incident with vi
0 otherwise

64 TOPIC 4. GRAPHS

Example 4.21 Represent the graph shown below with an
incidence matrix.

v1 v2

v5 v4

e4 v3e1

e2

e3 e6

e5

Incidence matrices can also be used to represent multi-
ple edges and loops. Multiple edges are represented in
the incidence matrix using columns with identical en-
tries, since these edges are incident with the same pair
of vertices. Loops are represented using a column with
exactly one entry equal to 1, corresponding to the vertex
that is incident with this loop.

Example 4.22 Represent the pseudograph shown below
using an incidence matrix.

e8

v4

e7

e1

e2

v1 e3
v2 e4 v3

e5

v5

e6

4.4 Connectivity, paths and circuits

Many problems can be studied by considering paths formed
by traveling along the edges of graphs. For instance, the
problem of determining whether a message can be sent

4.4. CONNECTIVITY, PATHS AND CIRCUITS 65

between two computers using intermediate links can be
studied with a graph model.

Paths and circuits

We begin by defining the basic terminology of paths and
circuits.

Definition 4.12

• A path of length n from u to v, where n is a
non-negative integer, in an undirected graph is a
sequence of edges e1, . . . , en of the graph such that
f(e1) = {x0, x1}, f(e2) = {x1, x2}, . . . , f(en) =
{xn−1, xn}, where x0 = u and xn = v. When the
graph is simple, we denote this path by its vertex
sequence x0, x1, . . . , xn (since listing these vertices
uniquely determines the path).

• The path is a circuit (or cycle) if it begins and
ends at the same vertex, that is, if u = v. The path
or circuit is said to pass through or traverse the
vertices x1, x2, . . . , xn−1 .

• A path or circuit is simple if it does not contain
the same edge more than once.

We remark that the graph theory literature does not
agree on whether or not a simple path is allowed to visit
any vertex twice (except perhaps the intial vertex being
equal to the final vertex, in the case of a circuit). The
graph theory literature contains other notions, such as
“walk” and “trail” that are more general than the no-
tion of “simple path”.

When it is not necessary to distinguish between mul-
tiple edges, we will denote a path e1, e2, . . . , en where
f(ei) = {xi−1, xi} for i = 1, 2, . . . , n by its vertex se-
quence x0, x1, . . . , xn. This notation identifies a path
only up to the vertices it passes through. There may be
more than one path that passes through this sequence of
vertices.

66 TOPIC 4. GRAPHS

Example 4.23 In the simple graph given below, show
that a, d, c, f, e is a simple path of length 4. Why is
d, e, c, a is not a path? Show that b, c, f, e, b is a circuit.
What is the length of the circuit b, c, f, e, b? Is the path
a, b, e, d, a, b simple?

a b c

d e f

Theorem 4.4 Let G = (V,E) be a graph and let u, v ∈
V . If there is a path from u to v then there is a simple
path from u to v.

Proof: See lecture.

Theorem 4.5 Let G = (V,E) be a graph and let u, v, w ∈
V . If there is a path from u to v and a path from v to w
then there is a path from u to w.

Proof: See lecture.

Connectedness in undirected graphs

A fundamental problem is to determine whether or not
a network has the property that every pair of nodes
can communicate with one another. For example, in a
network of computers or data centres, two devices can
communicate if there is a a cable between them or if
their messages can be sent through one or more inter-
mediate computers. If the network is represented by a
graph, where edges represent the communication links,
this problem becomes: When is there always a path be-
tween two vertices in the graph?

Definition 4.13 An undirected graph is called connected
if there is a path between every pair of distinct vertices
of the graph.

For this definition we always allow a path of length 0
from a vertex to itself.

Thus, any two computers in the network can communi-
cate if and only if the graph of this network is connected.

4.4. CONNECTIVITY, PATHS AND CIRCUITS 67

Example 4.24 Is the graph G shown below connected?
Why or why not? Is the graph H shown below connected?
Why or why not?

a b

d

c

e

gf

h j

k

m

p

n

G H

Theorem 4.6 There is a simple path between every pair
of distinct vertices of a connected undirected graph.

Proof: See lecture.

Components

A graph that is not connected is the union of two or
more connected graphs, each pair of which has no vertex
in common. These disjoint connected graphs are called
the connected components of the graph.

68 TOPIC 4. GRAPHS

Example 4.25 What are the connected components of
the graph G shown below?

b c

fd

a

e

Paths and circuits in directed multigraphs

Definition 4.14

• A path of length n, where n is a positive integer,
from u to v in a directed multigraph is a sequence of
edges e1, e2, . . . , en of the graph such that f(e1) =
(x0, x1), f(e2) = (x1, x2), . . . , f(en) = (xn−1, xn),
where x0 = u and xn = v. When there are no
multiple edges in the graph, this path is denoted by
its vertex sequence x0, x1, x2, . . . , xn.

• A path that begins and ends at the same vertex is
called a circuit or cycle.

• A path or circuit is called simple it does not con-
tain the same edge more than once and each vertex
only appears once unless the initial vertex is the
final vertex or there is a loop in the graph.

When it is not necessary to distinguish between mul-
tiple edges, we will denote a path e1, e2, . . . , en where
f(e1) = (xi−1, xi) for i = 1, 2, . . . , n by its vertex se-
quence x0, x1, . . . , xn. The notation identifies a path only
up to the vertices it passes through. There may be more
than one path that passes through this sequence of ver-
tices.

Connectedness in directed graphs

There are two notions of connectedness in directed graphs,
depending on whether the directions of the edges are con-
sidered. Again we declare that a vertex is always strongly
connected with itself (by a path of length zero).

Definition 4.15 Two vertices a, b in a directed graph
are strongly connected if there is a path from a to b and
a path from b to a.

4.4. CONNECTIVITY, PATHS AND CIRCUITS 69

A directed graph is strongly connected if there is a path
from a to b and a path from b to a whenever a and b are
vertices in the graph.

For a directed graph to be strongly connected there must
be a sequence of directed edges from any vertex in the
graph to any other vertex. A directed graph can fail to
be strongly connected but still be in “one piece.” To
make this precise, the following definition is given.

Definition 4.16 A directed graph is weakly connected
if there is a path between any two vertices in the under-
lying undirected graph.

That is, a directed graph is weakly connected if and only
if there is always a path between two vertices when the
directions of the edges are disregarded. Clearly, any
strongly connected directed graph is also weakly con-
nected.

Theorem 4.7 Let G = (V,E) be a directed graph.

1. Every vertex is strongly connected to itself.

2. Let u, v ∈ V . If u is strongly connected to v then v
is strongly connected to u.

3. Let u, v, w ∈ V . If u is strongly connected to v
and v is strongly connected to w then u is strongly
connected to w.

Proof: See lecture.

70 TOPIC 4. GRAPHS

Example 4.26 Are the directed graphs G and H shown
below strongly connected? Are they weakly connected?

a b

c

d e

a b

c

d e

G

H

Counting paths between vertices

The number of paths between two vertices in a graph can
be determined using its adjacency matrix.

Theorem 4.8 Let G be a graph with adjacency matrix A
with respect to the ordering v1, v2, . . . , vn (with directed or
undirected edges, with multiple edges and loops allowed).
The number of different paths of length r from vi to vj ,
where r is a positive integer, equals the (i, j)th entry of
Ar.

Proof: See lecture.

4.5. EULER PATHS 71

Example 4.27 How many paths of length 4 are there
from a to d in the simple graph G shown below?

a b

cd

G

4.5 Euler paths

We now tell a famous story in the history of graph the-
ory. Back in the 18th century, the town of Königsberg
was part of Prussia (it is now called Kaliningrad and is
part of the Russian republic). The town was divided
into four sections by the Pregel River. These four sec-
tions included the two regions on the banks of the Pregel,
Kneiphof Island, and the region between the two branches
of the Pregel. In the 18th century seven bridges con-
nected these regions. The image below (from the Mac-
Tutor website) depicts these regions and bridges.

The people in the town enjoyed walking through the town
on Sundays. They wondered whether it was possible to
start at some location in the town, travel across all the
bridges without crossing any bridge twice, and return to
the starting point.

The Swiss mathematician Leonhard Euler showed that
no such Sunday stroll exists. His solution was published
in 1736, and is considered to be the birth of graph the-
ory. Euler studied this problem using the multigraph ob-
tained when the four regions are represented by vertices
and the bridges are represented by edges. This multi-
graph is shown below.

72 TOPIC 4. GRAPHS

Euler circuits and paths

The problem of traveling across every bridge without
crossing any bridge more than once can be rephrased
in terms of this model. The question becomes: Is there
a circuit in this multigraph that contains every edge ex-
actly once? (Note that this circuit is required to visit
every edge, so it must visit vertices of degree > 2 more
than once.) This may seem an artificial problem, but it
has applications in scheduling postal delivery routes and
trash collection services.

Definition 4.17 An Euler circuit in a graph G is a sim-
ple circuit containing every edge of G. An Euler path in
G is a path containing every edge of G exactly once.

Example 4.28 Which of the undirected graphs below
have an Euler circuit? Of those that do not, which have
an Euler path?

a b

d

e

a b

c d

e

a b

c

de

c

G2G1

G3

4.5. EULER PATHS 73

Example 4.29 Which of the directed graphs below have
an Euler circuit? Of those that do not, which have an
Euler path?

G3

G2G1

Almost Euler circuits

A closed walk with no repeated edges may be called an
‘almost-Euler’ circuit.

Note: If it uses all edges, it is an Euler circuit.

We now have an algorithm to find an ‘almost-Euler’ cir-
cuit starting at any vertex v (when every vertex has even
degree):

• Choose any edge e = {v, w} incident with v, set W
to be the walk (v, w), and remove the edge e from
the graph;

• While the last vertex x of W is not v, do the fol-
lowing:

– Choose any edge e = {x, y} incident with x;

– Adjoin e to W and delete e from the graph;

– Re-define x (the last vertex of W) to be y.

• Output W and stop.

74 TOPIC 4. GRAPHS

Building larger almost-Euler circuit

Suppose T = (v0, v1, . . . , vk, v0) and U = (w0, w1, . . . , wℓ, w0)
are almost-Euler circuits with a common vertex, say vi =
wj , but with no edges in common.

Then we can attach T and U together at the common
vertex vi = wj to create a longer almost-Euler circuit,
namely

(v0, v1, . . . , vi, wj+1, . . . , wℓ, w0, . . . , wj−1, wj , vi+1, . . . , vk, v0).

In other words, follow T from v0 to vi = wj , then follow
U from wj (through wℓ and w0) to wj again, and then
complete the circuit by taking T the rest of the way from
wj = vi to v0.

Necessary and sufficient condition for Euler cir-
cuits

There are simple criteria for determining whether a multi-
graph has an Euler circuit or an Euler path. Euler discov-
ered them when he solved the famous Königsberg bridge
problem. We will assume that all graphs discussed in
this section have a finite number of vertices and edges.

What can we say if a connected multigraph has an Euler
circuit? What we can show is that every vertex must
have even degree.

• To do this, first note that an Euler circuit begins
with a vertex a and continues with an edge incident
to a, say {a, b}. The edge {a, b} contributes 1 to
deg(a).

• Each time the circuit passes through a vertex it
contributes 2 to the vertex’s degree, since the cir-
cuit enters via an edge incident with this vertex
and leaves via another such edge.

• Finally, the circuit terminates where it started, con-
tributing 1 to deg(a). Therefore, deg(a) must be
even, because the circuit contributes 1 when it be-
gins, 1 when it ends, and 2 every time it passes
through a (if it ever does).

• A vertex other than a has even degree because
the circuit contributes 2 to its degree each time
it passes through the vertex.

• We conclude that if a connected graph has an Euler
circuit, then every vertex must have even degree.

Example 4.30 Solve the Königsberg bridge problem.

Is this necessary condition for the existence of an Euler
circuit also sufficient? That is, must an Euler circuit
exist in a connected multigraph if all vertices have even
degree? The next result is one of the first big theorems
in graph theory.

4.5. EULER PATHS 75

Theorem 4.9 A connected multigraph has an Euler cir-
cuit if and only if each of its vertices has even degree.

The algorithm below gives the constructive procedure for
finding Euler circuits.

procedure Euler(G: connected multigraph with all vertices
of even degree)

C := a circuit in G beginning at an arbitrarily chosen ver-
tex with edges successively added to form a path that
returns to this vertex.

Initially C is empty.

H := G with the edges of C removed

while H has edges

begin

S := a circuit in H beginning at a vertex in H that
also is an endpoint of an edge of C

H := H with edges of S and all isolated vertices re-
moved

C := C with S inserted at the appropriate vertex

end {C is an Euler circuit}

Example 4.31 Many puzzles ask you to draw a picture
in a continuous motion, without lifting the pencil off the
page, so that no part of the picture is retraced. We can
solve such puzzles using Euler circuits and paths. For
example, can Mohammed’s scimitars, shown below, be
drawn in this way, where the drawing begins and ends at
the same point?

a

b

c

d

e
f

i

j

k

h
g

Necessary and sufficient condition for Euler paths

Theorem 4.10 A connected multigraph has an Euler
path but not an Euler circuit if and only if it has exactly
two vertices of odd degree.

76 TOPIC 4. GRAPHS

Example 4.32 Which graphs shown below have an Eu-
ler path?

G3

G1 G2

Example 4.33 Returning to 18th-century Königsberg,
is it possible to start at some point in the town, travel
across all the bridges exactly once, and end up at some
other point in town?

Example 4.34 A domino is a rectangle divided into two
squares with each square numbered one of 0, 1, . . . , 6.
Two squares on a single domino can have the same num-
ber. Show that the twenty-one distinct dominoes can be
arranged in a circle so that touching dominoes have ad-
jacent squares with identical numbers. (Hint : Consider
the complete graph K7 with vertices labeled 0, 1, . . . , 6.
This has a Euler circuit since each of its vertices has
degree 6.)

4.6 * Isomorphism of graphs

We often need to know whether it is possible to draw
two graphs in the same way. For instance, in chemistry,
graphs are used to model compounds. Different com-
pounds can have the same molecular formula but can

4.6.* ISOMORPHISM OF GRAPHS 77

differ in structure. Such compounds will be represented
by graphs that cannot be drawn in the same way. The
graphs representing previously known compounds can be
used to determine whether a supposedly new compound
has been studied before.

Isomorphic graphs

Definition 4.18 The simple graphs G1 = (V1, E1) and
G2 = (V2, E2) are isomorphic if there is a one-to-one
and onto function h : V1 → V2 with the property that a
and b are adjacent in G1 if and only if h(a) and h(b) are
adjacent in G2, for all a and b in V1. Such a function h
is called an isomorphism.

In other words, when two simple graphs are isomorphic,
there is a one-to-one correspondence between vertices of
the two graphs that preserves the adjacency relationship.

Example 4.35 Show that the graphs G = (V,E) and
H = (W,F), displayed below, are isomorphic.

H
G

Invariant properties

It is often difficult to determine whether two simple graphs
are isomorphic. There are n! possible one-to-one corre-
spondences between the vertex sets of two simple graphs
with n vertices. Testing each such correspondence to see
whether it preserves adjacency and nonadjacency is im-
practical if n is at all large.

However, we can often show that two simple graphs are
not isomorphic by showing that they do not share a prop-
erty that isomorphic simple graphs must both have. Such
a property is called an invariant with respect to isomor-
phism of simple graphs. For instance:

• Isomorphic simple graphs must have the same num-
ber of vertices, since there is a one-to-one corre-
spondence between the sets of vertices of the graphs.

• Isomorphic simple graphs must have the same num-
ber of edges, because the one-to-one correspondence
between vertices establishes a one-to-one correspon-
dence between edges.

78 TOPIC 4. GRAPHS

• The degrees of the vertices in isomorphic simple
graphs must be the same. That is, a vertex v of
degree d in G must correspond to a vertex h(v) of
degree d in H , since a vertex w in G is adjacent to
v if and only if h(v) and h(w) are adjacent in H .

Number of vertices and edges in isomorphic graphs

The number of vertices, the number of edges, and the
degrees of the vertices are all invariants under isomor-
phism. If any of these quantities differ in two simple
graphs, these graphs cannot be isomorphic.

However, when these invariants are the same, it does
not necessarily mean that the two graphs are isomorphic.
There are no useful sets of invariants currently known
that can be used to determine whether simple graphs
are isomorphic.

Example 4.36 Determine whether the graphs G and H
shown below are isomorphic.

d

gh

s

v

y

a b

c

e f

z

w x

t

u

G H

To show that a function h from the vertex set of a graph
G to the vertex set of a graph H is an isomorphism, we
need to show that h preserves edges. One helpful way
to do this is to use adjacency matrices. In particular, to
show that h is an isomorphism, we can show that the ad-
jacency matrix of G is the same as the adjacency matrix
of H , when rows and columns are labeled to correspond
to the images under h of the vertices in G that are the
labels of these rows and columns in the adjacency matrix
of G.

4.6.* ISOMORPHISM OF GRAPHS 79

Example 4.37 Determine whether the graphs G and H
displayed below are isomorphic.

a b

cd

w x

y
z

G

H

Paths and isomorphism

There are several ways that paths and circuits can help
determine whether two graphs are isomorphic. For ex-
ample, the existence of a simple circuit of a particular
length is a useful invariant that can be used to show that
two graphs are not isomorphic. In addition, paths can be
used to construct mappings that may be isomorphisms.

80 TOPIC 4. GRAPHS

Example 4.38 Determine whether the graphs shown be-
low are isomorphic.

a b

c

de

f

x

r

s

z y

t

G H

We have shown how the existence of a type of path,
namely, a simple circuit of a particular length, can be
used to show that two graphs are not isomorphic. We
can also use paths to find mappings that are potential
isomorphisms.

Example 4.39 Determine whether the graphs shown be-
low are isomorphic.

a

b

c

d

e

v

w

x

y

z

G H

4.6.* ISOMORPHISM OF GRAPHS 81

* Subgraphs

Sometimes we need only part of a graph to solve a prob-
lem. For instance, we may care only about one part of
a large computer network, such as the part that involves
the data centres in Auckland, Hamilton, Wellington, and
Christchurch. We can ignore the other centres and ca-
bles. In the graph model we remove the vertices cor-
responding to the computer centres other than the four
of interest, and we remove all edges incident with any
vertex that was removed.

When edges and vertices are removed from a graph, with-
out removing endpoints of any remaining edges, a smaller
graph is obtained. Such a graph is called a subgraph of
the original graph.

Definition 4.19 A subgraph of a graph G = (V,E) is
a graph H = (W,F) where W ⊆ V and F ⊆ E.

Notice that, in the definition of a subgraph, we must re-
move any edges which have had one of their endpoints
removed. This does not mean that we may not also re-
move some of the other edges. For example, for any graph
G = (V,E), the graph H = (V,∅) counts as a (rather
uninteresting) example of a subgraph.

82 TOPIC 4. GRAPHS

Example 4.40 Let G be the graph shown below. Which
of the graphs H1, H2, H3 are subgraphs of G?

G

u

v

w

z

H1
u

v

w

z

H2

v

w

z

u

H3

w

z

u

4.7.* HAMILTON PATHS AND CIRCUITS 83

4.7 * Hamilton paths and circuits

We have developed necessary and sufficient conditions
for the existence of paths and circuits that contain every
edge of a multigraph exactly once. Can we do the same
for simple paths and circuits that contain every vertex of
the graph exactly once?

Definition 4.20 A path x0, x1, . . . , xn−1, xn in the graph
G = (V,E) is called a Hamilton path if

V = {x0, x1, . . . , xn−1, xn}

and xi ̸= xj for 0 ≤ i < j ≤ n.
A circuit

x0, x1, . . . , xn−1, xn, x0

(with n > 1) in a graph G = (V,E) is called a Hamilton
circuit if x0, x1, . . . , xn−1, xn is a Hamilton path.

Hamilton’s puzzle

This terminology comes from a puzzle invented in 1857
by the Irish mathematician Sir William Rowan Hamilton.
Hamilton’s puzzle consisted of a wooden dodecahedron (a
polyhedron with 12 regular pentagons as faces, as shown
below, with a peg at each vertex of the dodecahedron,
and string. The 20 vertices of the dodecahedron were
labeled with different cities in the world. The object of
the puzzle was to start at a city and travel along the
edges of the dodecahedron (see the following picture),
visiting each of the other 19 cities exactly once, and end
back at the first city. The circuit traveled was marked
off using the strings and pegs.

Example 4.41 Since we cannot supply each student with
a wooden solid with pegs and string, we will consider the
equivalent question: Is there a circuit in the graph shown
below that passes through each vertex exactly once? This
solves the puzzle since this graph is isomorphic to the

84 TOPIC 4. GRAPHS

graph consisting of the vertices and edges of the dodeca-
hedron.

Example 4.42 Which of the simple graphs below have a
Hamilton circuit or, if not, a Hamilton path?

a

b c

d

ef

g

b c

g

ef

G1

G2

Determining whether a graph contains a Hamil-
ton circuit

Is there a simple way to determine whether a graph has
a Hamilton circuit or path? At first, it might seem that
there should be an easy way to determine this, since there
is a simple way to answer the similar question of whether
a graph has an Euler circuit.

Surprisingly, there are no known simple necessary and
sufficient criteria for the existence of Hamilton circuits.
However, many theorems are known that give sufficient
conditions for the existence of Hamilton circuits. Also,
certain properties can be used to show that a graph has
no Hamilton circuit.

4.7.* HAMILTON PATHS AND CIRCUITS 85

• A graph with a vertex of degree 1 cannot have a
Hamilton circuit, since in a Hamilton circuit each
vertex is incident with two edges in the circuit.

• If a vertex in the graph has degree 2, then both
edges that are incident with this vertex must be
part of any Hamilton circuit.

• When a Hamilton circuit is being constructed and
this circuit has passed through a vertex, then all re-
maining edges incident with this vertex, other than
the two used in the circuit, can be removed from
consideration.

• A Hamilton circuit cannot contain a smaller circuit
within it.

Example 4.43 Show that neither graph displayed below
has a Hamilton circuit.

G1 G2

Example 4.44 Show that Kn has a Hamilton circuit
whenever n ≥ 3.

The traveling salesperson problem

Suppose the drawing in Figure 4.1 is a map showing four
cities and the distances in kilometers between them. Sup-
pose that a salesperson must visit each city exactly once,
starting and ending in city A. Which route from city to
city will minimize the total distance that must be trav-
eled?

86 TOPIC 4. GRAPHS

A

B C

D

30

50

35 25

40

30

Figure 4.1:

This problem can be solved by writing all possible Hamil-
tonian circuits starting and ending at A and calculating
the total distance traveled for each.

Route Total Distance (in kilometers)
ABCDA 30+30+25+40=125
ABDCA 30+35+25+50=140
ACBDA 50+30+35+40=155
ACDBA 140 [ABDCA backwards]
ADBCA 155 [ACBDA backwards]
ADCBA 125 [ABCDA backwards]

Thus either route ABCDA or ADCBA gives a minimum
total distance of 125 kilometers.

The general traveling salesperson problem involves find-
ing a Hamiltonian circuit to minimize the total distance
traveled for an arbitrary graph with n vertices in which
each edge is marked with a distance. One way to solve
the general problem is to use the above method. Write
down all Hamiltonian circuits starting and ending at a
particular vertex, compute the total distance for each,
and pick one for which this total is minimal. However,
even for medium-sized values of n this method is imprac-
tical. At present, there is no known algorithm for solving
the general traveling salesperson problem that is more ef-
ficient. However, there are efficient algorithms that find
‘pretty good’ solutions, that is, circuits that, while not
necessarily having the least possible total distance, have
smaller total distances than most other Hamiltonian cir-
cuits.

Trees

The word “tree” is used slightly differently between math-
ematicians and computer scientists. For a mathemati-
cian, a tree is a connected graph that contains no simple
circuits. In this sense, trees were used by Arthur Cayley
in 1857 to count certain types of chemical compounds.
They have many other applications.

Trees are particularly useful in computer science. Here,
it is usual to study “rooted trees”, which are trees with a
distinguished vertex called the “root”. Rooted trees of-
ten also have a sense of “direction”. A family tree is an
example of a rooted tree. Rooted trees allow efficient al-
gorithms for locating items in a list, and the construction
of efficient codes for storing and transmitting data.

5.1 Introduction to trees

Our first example is the genealogical family tree of the
Bernoulli family. (This family includes a number of fa-
mous Swiss mathematicians). This is a graph where the
vertices represent family members and the edges repre-
sent parent-child relationships. This is a rooted tree with
Nikolaus Bernoulli being the “root” vertex. If we forget
the root and the “ordering” then we obtain an undirected
connected graph with no simple circuits, which is the
mathematicians notion of a tree.

Nikolaus

Nikolaus I

Nikolaus II

Jacob Johann I

Nikolaus III

(1695ï1776)

Daniel Johann II

(1654ï1705)

(1623ï1708)

(1662ï1716)

(1687ï1759)

(1667ï1748)

(1710ï1782) (1710ï1790)

Johann III Jacob II
(1746ï1807) (1759ï1789)

Definition 5.1 A tree is a connected undirected graph
with no simple circuits.

87

88 TOPIC 5. TREES

Since a tree cannot have a simple circuit, a tree cannot
contain multiple edges or loops. Therefore any tree must
be a simple graph.

Example 5.1Which of the graphs shown below are trees?

(c)(a) (b) (d)

Forests

Any connected graph that contains no simple circuits is
a tree. What about graphs containing no simple circuits
that are not necessarily connected? These graphs are
called forests and have the property that each of their
connected components is a tree.

Example 5.2 The figure shown below displays a forest.

Unique simple paths

Trees are often defined as undirected graphs with the
property that there is a unique simple path between every
pair of vertices. The following theorem shows that this
alternative definition is equivalent to our definition.

5.1. INTRODUCTION TO TREES 89

Theorem 5.1 An undirected graph is a tree if and only
if there is a unique simple path between any two of its
vertices.

Proof: See lecture.

Example 5.3 Prove that every tree is a bipartite graph
and show that the converse of this statement is not true.

Solution. Fix any vertex v0. Let V1 be the set of all vertices
whose unique path length from v0 is even and let V2 be the set of
all vertices whose unique path length from v0 is odd.
So every vertex of the tree can be partitioned into two subsets V1

and V2 such that every edge of the tree joins some vertex in V1 to
some vertex in V2.
Therefore, every tree is a bipartite graph.

The converse of the statement is not true . The complete bipartite
graph K2,2 (shown below) forms a counterexample, as it has a sim-
ple circuit. For more counterexamples, simply take any bipartite
graph that is not connected.

Rooted trees

In many applications of trees a particular vertex of a
tree is designated as the root. Once we specify a root,
we can assign a direction to each edge as follows. Since
there is a unique path from the root to each vertex of the
graph (from Theorem 5.1), we direct each edge away from
the root. Thus, a tree together with its root produces a
directed graph called a rooted tree.

We can change an unrooted tree into a rooted tree by
choosing any vertex as the root. Note that different
choices of the root produce different rooted trees.

90 TOPIC 5. TREES

Example 5.4 The figure shown below displays the rooted
trees formed by designating a to be the root and c to be
the root, respectively, in a tree.

Root c

Root a

a

b c d a

b

c

d

e

f g

f g e

We usually draw a rooted tree with its root at the top
of the graph. The arrows indicating the directions of the
edges in a rooted tree can be omitted, since the choice of
root determines the directions of the edges.

Terminology for rooted trees

The terminology for rooted trees has botanical and ge-
nealogical origins. Suppose that T is a rooted tree.

• If v is a vertex in T other than the root, the parent
of v is the unique vertex u such that there is a
directed edge from u to v.

• When u is the parent of v, v is called a child of u.

• Vertices with the same parent are called siblings.

• The ancestors of a vertex other than the root are
the vertices in the path from the root to this vertex,
excluding the vertex itself and including the root
(that is, its parent, its parent’s parent, and so on,
until the root is reached).

• The descendants of a vertex v are those vertices
that have v as an ancestor.

• A vertex of a tree is called a leaf (or terminal ver-
tex) if it has no children.

• Vertices that have children are called internal ver-
tices. The root is an internal vertex unless it is the
only vertex in the graph, in which case it is a leaf.

5.1. INTRODUCTION TO TREES 91

• If a is a vertex in a tree, the subtree with a as
its root is the subgraph of the tree consisting of a
and its descendants and all edges incident to these
descendants.

We cannot use terms like parent/child/ancestor/descendant
when discussing un-rooted trees, but leaf (only one edge),
internal vertices (at least 2 edges) make sense. The word
subtree is a dangerous word since a subgraph of a tree is
not necessarily the same as a subtree of a rooted tree.
We will try not to cause confusion with these words.

Example 5.5 In the rooted tree T (with root a) shown
below, find the parent of c, the children of g, the siblings
of h, all ancestors of e, all descendants of b, all internal
vertices, and all leaves. What is the subtree rooted at g?

a

b

c

d e

f

g

h i j

k ml

m-ary trees and binary trees

Rooted trees with the property that all of their internal
vertices have the same number of children are used in
many different applications. Later in this topic we will
use such trees to study problems involving coding.

Definition 5.2 A rooted tree is called an m-ary tree if
every vertex has no more than m children. The tree is
called a fullm-ary tree if every internal vertex has exactly
m children. An m-ary tree with m = 2 is called a binary
tree.

92 TOPIC 5. TREES

Example 5.6 Are the rooted trees shown below full m-
ary trees for some positive integer m?

(Full) Binary tree

3-ary tree

Full 3-ary tree

Ordered rooted tree

An ordered rooted tree is a rooted tree where the children
of each internal vertex are ordered. Ordered rooted trees
are drawn so that the children of each internal vertex are
shown in order from left to right. Note that a representa-
tion of a rooted tree in the conventional way determines
an ordering for its edges. We will use such orderings of
edges in drawings without explicitly mentioning that we
are considering a rooted tree to be ordered.

• In an ordered binary tree, if an internal vertex has
two children, the first child is called the left child
and the second child is called the right child.

5.1. INTRODUCTION TO TREES 93

• The tree rooted at the left child of a vertex is called
the left subtree of this vertex, and the tree rooted at
the right child of a vertex is called the right subtree
of the vertex.

The student should note that for some applications every
vertex of a binary tree, other than the root, is designated
as a right or a left child of its parent. This is done even
when some vertices have only one child. We will make
such designations whenever it is necessary, but not oth-
erwise.

Example 5.7 What are the left and right children of
d in the binary tree T shown below (where the order is
that implied by the drawing)? What are the left and right
subtrees of c?

a

b c

d

e

f g

h i

j k

l

m

Given an ordered rooted tree one can consider several
methods to list all the vertices in the tree.

One approach is called the preorder algorithm: Preorder(T)
runs on a tree T with root r by printing the root, then
if x1, . . . , xk are the children (in order) the algorithm
recursively calls Preorder(T1), . . . , Preorder(Tk) where
each Ti is the sub-tree with root xi.

The postorder algorithm is: Postorder(T) on a tree T
with root r and children x1, . . . , xk in order runs Postorder(T1),
. . . , Postorder(Tk) and then prints the root r.

Just as in the case of graphs, there is no standard ter-
minology used to describe trees, rooted trees, ordered
rooted trees, and binary trees. This nonstandard termi-
nology occurs since trees are used extensively throughout
computer science, which is a relatively young field. The
student should carefully check meanings given to terms
dealing with trees whenever they occur.

94 TOPIC 5. TREES

5.2 Some applications of trees

We now discuss some applications of trees in computer
science, chemistry, and business.

Trees in Chemistry

An important abstraction in chemistry is to write molecules
as graphs. Atoms are represented as vertices and chem-
ical bonds are writted as edges. Sometimes the graphs
have cycles (e.g., Benzene) but in many important cases
they are trees. Note that, in these cases, they naturally
arise as trees without a root. The English mathematician
Arthur Cayley discovered trees in 1857 when he was try-
ing to enumerate the isomers of compounds of the form
CnH2n+2, which are called saturated hydrocarbons.

In graph models of saturated hydrocarbons, each carbon
atom is represented by a vertex of degree 4, and each
hydrogen atom is represented by a vertex of degree 1.
There are 3n+2 vertices in a graph representing a com-
pound of the form CnH2n+2. The number of edges in
such a graph is half the sum of the degrees of the ver-
tices. Hence, there are (4n+2n+2)/2 = 3n+1 edges in
this graph. Since the graph is connected and the number
of edges is one less than the number of vertices (Theorem
5.2 below), it must be a tree.

The nonisomorphic trees (i.e., ones that really do corre-
spond to different molecules) with n vertices of degree 4
and 2n+ 2 of degree 1 represent the different isomers of
CnH2n+2. For instance, when n = 4, there are exactly
two nonisomorphic trees of this type (it is a good exer-
cise to verify this). Hence, there are exactly two different
isomers of C4H10. Their structures are displayed below.
These two isomers are called butane and isobutane.

C

C

C

C

C

H

H

H

H

H

H

H

H

H

H

H

H

H

CC

C

H H

H

H

H

H

H

Butane

Isobutane

Computer file systems

Folders/directories on a computer disk have a tree struc-
ture corresponding to sub-folders/sub-directories. The

5.3. PROPERTIES OF TREES 95

root directory contains the entire file system. Thus, a
file system may be represented by a rooted tree, where
the root represents the root directory, internal vertices
represent subdirectories, and leaves represent ordinary
files or empty directories. One such file system is shown
below. In this system, the file khr is in the directory rj.

rje

khr

bin

ard ple

/

5.3 Properties of trees

Counting vertices and edges in trees

We will often need results relating the numbers of edges
and vertices of various types in trees.

Theorem 5.2 A tree with n vertices has n− 1 edges.

Proof: See lecture.

The number of vertices in a full m-ary tree with a spec-
ified number of internal vertices is determined, as the
following theorem shows. As in Theorem 5.2, we will use
n to denote the number of vertices in a tree.

Theorem 5.3 A full m-ary tree with i internal vertices
contains n = mi+ 1 vertices.

Proof: See lecture.

Example 5.8 Let T be a full m-ary tree with 28 vertices.
What are the possible values of m?

Solution. i = 27/m. Since i must be an integer, m must be 1,
3, 9, or 27.

Counting leaves

Suppose that T is a full m-ary tree with n vertices. Let
i be the number of internal vertices and l the number
of leaves in this tree. Once one of n, i, and l is known,
the other two quantities are determined. How to find the
other two quantities from the one that is known is given
in the following theorem.

96 TOPIC 5. TREES

Theorem 5.4 A full m-ary tree

1. with n vertices has

• i = (n− 1)/m internal vertices and

• l = [(m− 1)n+ 1]/m leaves,

2. with i internal vertices has

• n = mi+ 1 vertices and

• l = (m− 1)i+ 1 leaves,

3. with l leaves has

• n = (ml − 1)/(m− 1) vertices and

• i = (l − 1)/(m− 1) internal vertices.

Proof: See lecture.

Example 5.9 Suppose that someone starts a chain letter.
Each person who receives the letter is asked to send it on
to four other people. Some people do this, but others do
not send any letters. How many people have seen the
letter, including the first person, if no one receives more
than one letter and if the chain letter ends after there
have been 100 people who read it but did not send it out?
How many people sent out the letter?

Height and levels

For many applications it is desirable to use rooted trees
that are “balanced,” so that the subtrees at each vertex
contain paths of approximately the same length. Some
definitions will make this concept clear.

• The level of a vertex v in a rooted tree is the length
of the unique path from the root to this vertex. The
level of the root is defined to be zero.

• The height of a rooted tree is the maximum of the
levels of vertices. In other words, the height of a
rooted tree is the length of the longest path from
the root to any vertex.

5.3. PROPERTIES OF TREES 97

Example 5.10 Find the level of each vertex in the rooted
tree shown below. What is the height of this tree?

a

b c d

e f g h

j

p

nmlki

Example 5.11 Let T be a full m-ary tree with 50 ver-
tices. What must m be if T has height 2?

Solution. i = 49/m. Since i must be an integer, m must be 1,
7, or 49.

If m = 1, then a tree of height 2 has precisely 3 vertices.

If m = 7, then a tree of height 2 with 50 vertices can exist.

If m = 49, then T has precisely 1 internal vertex and hence height
1.

So if T has height 2, then it m = 7.

Balance

A rooted m-ary tree of height h is called balanced if all
leaves are at levels h or h− 1.

Is the rooted tree shown above balanced? Draw a tree
that is not balanced.

The following results relate the height and the number
of leaves in m-ary trees.

Theorem 5.5 There are at most mh leaves in an m-ary
tree of height h.

Proof: See lecture.

98 TOPIC 5. TREES

Corollary 5.1 If an m-ary tree of height h has l leaves,
then h ≥ ⌈logm l⌉. If the m-ary tree is full and balanced,
then h = ⌈logm l⌉. (We are using the ceiling function
here. Recall that ⌈x⌉ is the smallest integer greater than
or equal to x.)

5.4 Expression trees

Arithmetic expressions

Mathematical expressions that consist of integers and in-
teger variables, combined together using addition, sub-
traction and multiplication, are called arithmetic expres-
sions.

Some examples are 0, 2, x, y, 2+x, x ·y, ((x ·y)−(2+x))
and ((x · y)− (2 + x)) + y.

Arithmetic expressions can be defined inductively as fol-
lows:

• Integer variables and integers are arithmetic ex-
pressions.

• If A and B are arithmetic expressions, then so are
A+B, A−B and A ∗B (= A ·B).

Expression trees

Every arithmetic expression can be represented by a tree,
called an expression tree. For example, (x − y) ∗ ((x +
9)− 4) can be represented by

∗

− −

x y + 4

x 9

Inductive definition of an expression tree

Let Te be the tree representing the arithmetic expression
e.

Basis: If e is an integer or integer variable, take Te as a
single vertex labelled e.

Induction: If e is of the form A ⋄B (where ⋄ is +, − or
·), then take the expression trees TA and TB (for A and
B), and create Te by introducing a new root vertex with
label ⋄, and new edges from this vertex to the roots of
TA and TB.

•

• •

⋄

TA TB

5.5. SPANNING TREES 99

Theorem 5.6 In an expression tree T , every leaf is la-
belled with an integer or integer variable, and every in-
terior vertex is labelled with +, · or −.

Proof: We use induction on the number of vertices.

Basic step: If T has one vertex then the expression is
a single integer or integer variable, and that vertex is a
leaf (and there are no interior vertices), so the conclusion
holds.

Inductive step: Suppose T has more than one vertex.
Then T is the tree for an expression of the form A ⋄ B,
with root labelled ⋄. By induction, we may suppose TA

and TB have the required properties. Now every leaf of
T is a leaf of TA or TB, and so is labelled with an integer
or integer variable, while every interior vertex of T other
than the root is an interior vertex of TA or TB, so is
labelled with +, · or −.

5.5 Spanning trees

Consider the system of roads in the North Island repre-
sented by the simple connected graph shown below. If
it snows, the only way a road can be kept open is us-
ing a snow-plough, but this costs a lot of money. The
transport department wants to plough the fewest roads
so that it will be possible to drive between any pair of
towns. How can this be done?

Tirau

Tauranga

Waioru

National Park

Ohakune

Taupo

At least five roads must be ploughed to ensure that there
is a path between any two towns. Note that the subgraph
representing these roads is a tree, since it is connected
and contains six vertices and five edges.

This problem was solved with a connected subgraph with
the minimum number of edges containing all vertices of
the original simple graph. Such a graph must be a tree.

Definition 5.3 Let G be a simple graph. A spanning
tree of G is a subgraph of G that is a tree containing
every vertex of G.

A simple graph with a spanning tree must be connected,
since there is a path in the spanning tree between any

100 TOPIC 5. TREES

two vertices. The converse is also true; that is, every
connected simple graph has at least one spanning tree.
We will give an example before proving this result.

Example 5.12 Find a spanning tree of the simple graph
G shown below.

u w

xyz

Another characterization of connected graphs

Theorem 5.7 A simple graph is connected if and only
if it has a spanning tree.

Proof: See lecture.

Sets, Relations and Functions

6.1 Sets

A set is a collection of objects. The objects in the set
are called the elements of the set. We indicate that the
object x is an element of the set A by writing x ∈ A:
otherwise, we write x /∈ A.

We have three basic ways of specifying a particular set;
enumeration, comprehension and replacement.

Enumeration to describe a set by enumeration, we list
the elements. The order is unimportant, and it
makes no difference if we list an element more than
once. So the following specifications are equivalent:

A = {2, 4, 6, 8}
A = {6, 8, 4, 2}
A = {2, 4, 2, 6, 2, 8}

Comprehension or Abstraction to describe a set by
comprehension, we give some rule to determine whether
or not a given object is in the set. To use the same
example as above, we have

A = { x : x is an even integer and 2 ! x ! 8 }

This is also often called “set builder” notation. Some
authors use the symbol | instead of :, e.g., A = {2n |
n ∈ Z, 1 ! n ! 4}.

Replacement to describe a set by replacement, we take
some set we already know and specify some rule
for obtaining the elements of the new set from the
elements of the old one. For example, if B =
{1, 2, 3, 4} then

A = { 2x : x ∈ B }

When we use enumeration, we may need to use three
dots, . . . , for example to describe {1, 2, . . . , 20} or {0, 1, 2, . . .}.
When we use comprehension, we abbreviate

{ x : x ∈ S and P (x) } by { x ∈ S : P (x) }.

Notation

We also have standard symbols for the following sets:

∅ The empty set, which has no elements.

N The set of natural numbers, {0, 1, 2, . . .}.
(This notation is not standard; some authors de-
note this as Z≥0.)

101

102 TOPIC 6. SETS, RELATIONS AND FUNCTIONS

P The set of positive integers, {1, 2, 3, . . .}.

(This notation is not standard; some authors de-
note this as N or Z≥1.)

Z The set of integers.

Q The set of rational numbers,

{ m

n
: m ∈ Z, n ∈ P }.

R The set of real numbers.

Subsets, equality of sets, power set

Let A and B be sets. We say that A is a subset of B,
written A ⊆ B, if every element of A is an element of B.
For example, every natural number is a real number, so
N ⊆ R. Notice that ∅ ⊆ A for every set A.

Again, let A and B be sets. We say that A and B are
equal , written A = B, if they have exactly the same
elements. Note that there is no notion of “repeated”
elements in a set, so that {1, 1, 1, 2, 2, 3}= {1, 2, 3}.

Example 6.1

{ x ∈ R : x2 − 5x+ 6 = 0 } = .

Notice that if A = B then A ⊆ B and B ⊆ A, and
conversely if A ⊆ B and B ⊆ A then A = B.

Example 6.2 Let A = {1}, B = {1, {1}} and C =
{2, 3, {1, 2, 3}}.

The integer 1 is an element of A, so 1 ∈ A. Similarly,
1 ∈ B and 1 ̸∈ C. The set B also contains the element
{1}. So we can say {1} ∈ B and {1} ̸∈ A. Similarly,
2 ∈ C and {1, 2, 3} ∈ C.

We have A ⊆ A, A ⊆ B and A ̸⊆ C.

We also have A ̸∈ A since A does not contain the element
{1}, but, as we said, A ∈ B since B does contain the
element A = {1}.

6.2. SET OPERATIONS 103

Example 6.3 Let A = { x ∈ Z : x = 2p, p ∈ Z },
B = { y ∈ Z : y = 2q + 2, q ∈ Z },and
C = { z ∈ Z : z = 3r − 1, r ∈ Z }.

(a) Is A = B?

(b) Is A = C?

Solution.

(a) Yes. We need to show that A ⊆ B and B ⊆ A.
Take a ∈ A. Then a = 2p for some p ∈ Z. If we set
q = p − 1, then q ∈ Z and a = 2p = 2(q + 1) = 2q + 2 so
a ∈ B.Therefore, A ⊆ B.
Next, take b ∈ B. Then b = 2q+2 for some q ∈ Z. If we set
p = q+1, then p ∈ Z and b = 2(p − 1)+2 = 2p − 2+2 = 2p.
So b ∈ A. Therefore, B ⊆ A.
Since A ⊆ B and B ⊆ A, we have A = B.

(b) No. 4 ∈ A since 4 = 2(2). But 4 /∈ C since if it were, then
4 = 3r − 1, so r = 5

3 /∈ Z. So 4 /∈ C, and A ̸= C

Power Set

Given a set A we can form the power set of A, denoted
by P(A), containing all the subsets of A.

Example 6.4 If A = {1, 2} then

P(A) =

We will show later that if A has n elements then P(A)
has 2n elements.

6.2 Set operations

We can form new sets from old ones using the operations
of union, intersection and complement. Given two sets
A and B, we define

• the union of A and B, written A ∪B, by

A ∪B = { x : x ∈ A or x ∈ B }.

[NB. we use “inclusive or”, in other words the above
means “x ∈ A, or x ∈ B, or possibly both”]

• the intersection of A and B, written A ∩B, by

A ∩B = { x : x ∈ A and x ∈ B }.

• the relative complement or difference of B with re-
spect to A, written A \B, by

A \B = { x : x ∈ A and x /∈ B }.

104 TOPIC 6. SETS, RELATIONS AND FUNCTIONS

The easiest way to visualize these is by using Venn dia-
grams: we draw circles to represent the sets A andB, and
shade the regions we are interested in. Note that Venn
diagrams have limited use when considering more com-
plex problems, and they are not acceptable as a method
of proof.

Universal set

It is sometimes useful to fix some universal set U , and say
that we are only interested in elements of U and subsets
of U . For example, we might take U = N or U = R. If
we have fixed some universal set U , and A ⊆ U , then we
define the absolute complement of A, written A, by

A = {x ∈ U : x /∈ A }.

In other words, A = U \ A. In a Venn diagram, we
represent U by a rectangular box containing all the other
sets.

Notice that A \B = A ∩B.

Laws for combining sets

The operations we have described satisfy certain laws,
similar to the commutative law x + y = y + x and the
distributive law x(y+z) = xy+xz for real numbers. For
any subsets A, B and C of a universal set U we have

A = A Double complement

A ∩B = B ∩A Commutative
A ∪B = B ∪A

A ∩ (B ∩ C) = (A ∩B) ∩ C Associative
A ∪ (B ∪ C) = (A ∪B) ∪ C

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩C) Distributive
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪C)

A ∩ A = A Idempotent
A ∪ A = A

A \ (B ∩ C) = (A \B) ∪ (A \ C)
A \ (B ∪ C) = (A \B) ∩ (A \ C)

(B ∩ C) = B ∪C De Morgan’s
(B ∪ C) = B ∩C

Proof of laws

We won’t prove all of these here: we will just give one
example of how to prove them.

If A, B and C are sets, then

A ∩ (B ∪C) = (A ∩B) ∪ (A ∩ C).

Proof: We will first show the lhs is a subset of the rhs.
Suppose x ∈ A ∩ (B ∪ C). Then x ∈ A and x ∈ B ∪ C.

6.2. SET OPERATIONS 105

Since x ∈ B ∪ C, x ∈ B or x ∈ C. Hence (x ∈ A) ∧ (x ∈
B∨x ∈ C). Now we apply the distributive law for ∧ and
∨, to deduce that (x ∈ A ∧ x ∈ B) ∨ (x ∈ A ∧ x ∈ C).
This implies that x ∈ A ∩ B or x ∈ A ∩ C, and so x ∈
(A ∩B) ∪ (A ∩ C). Hence

A ∩ (B ∪ C) ⊆ (A ∩B) ∪ (A ∩ C). (∗)

We now show that (A∩B)∪ (A∩C) ⊆ A∩ (B ∪C). Let
y ∈ (A ∩ B) ∪ (A ∩ C). Then y ∈ A ∩ B or y ∈ A ∩ C.
So (y ∈ A ∧ y ∈ B) ∨ (y ∈ A ∧ y ∈ C). Applying the
distributive rule again we find (y ∈ A) ∧ (y ∈ B ∨ y ∈
C). This means y ∈ A and y ∈ B ∪ C. So we have
y ∈ A ∩ (B ∪C). Hence

(A ∩B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C).

Combining this with (∗), we get

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),

as required.

Example 6.5 Prove that A ∩B = A∪B by showing that
each set is a subset of the other.

Proof: Suppose that x ∈ A ∩B

It follows that x ̸∈
and so ¬ .

Thus x ∈ A x ∈ B.

Hence

This shows that ⊆ .

Now suppose that x ∈ A ∪B.

Then ∨
It follows that ¬
Hence, x A ∩B

Therefore x ∈
This demonstrates that ⊆ .

Since we have demonstrated that each set is a subset of
the other, these two sets must be equal and the identity
is proved.

Cardinality

If A is a finite set, we denote the number of elements of
A, (cardinality of A), by |A|.

106 TOPIC 6. SETS, RELATIONS AND FUNCTIONS

Example 6.6 Let A = {2, 3, 5, 7, 11, 13} and
B = {1, 3, 5, 7, 9}

Find |A|, |B|, |A \B|, |B \A|, |A ∪B|, |A ∩B|.

Solution. |A| = 6
|B| = 5
|A \B| = |{2, 11, 13}| = 3
|B \A| = |{1, 9}| = 2
|A ∪ B| = |{1, 2, 3, 5, 7, 9, 11, 13}| = 8
|A ∩ B| = |{3, 5, 7}| = 3

6.3 Ordered pairs, Cartesian products

Given two objects x and y, we can form the ordered pair
(x, y). Unlike the pair set {x, y}, the order in which the
elements appear is important: given two ordered pairs
(x, y) and (u, v), we have

(x, y) = (u, v) ⇔ x = u and y = v.

Similarly, we have ordered triples (x, y, z), ordered 4-
tuples (w, x, y, z), and so on, where if (x1, x2, . . . , xn) and
(y1, y2, . . . , yn) are ordered n-tuples then

(x1, x2, . . . , xn) = (y1, y2, . . . , yn)⇔ xi = yi

for i = 1, 2, . . . , n.

Cartesian product

Given sets A and B, we form the Cartesian product of A
and B, written A×B, defined by

A×B = { (a, b) : a ∈ A, b ∈ B }.

If A and B are finite sets then |A×B| = |A| · |B|.

If A1, A2, . . . , An are sets, we define A1×A2× · · ·×An

to be the set of all n-tuples (a1, a2, . . . , an) where ai ∈ Ai

for i = 1, 2, . . . , n.

We sometimes write An for A× A× · · ·×A︸ ︷︷ ︸
n times

. In partic-

ular, we often write A2 for A×A.

Example 6.7 The grid of squares used in the game of
battleships is the example

{1, 2, 3, 4, 5, 6, 7, 8}× {a, b, c, d, e, f, g, h}

of a Cartesian product.

6.4. RELATIONS 107

a

b

c

d

e

f
g

h

1 2 3 4 6 7 85

a

b

c

d

e

f
g

h

1 2 3 4 6 7 85

Example 6.8 What is the Cartesian product A×B×C
where A = {0, 1}, B = {1, 2}, and C = {0, 1, 2}? What
is (A×B)× C?

6.4 Relations

Let A and B be sets. A binary relation from A to B is
a subset of A×B. A binary relation on A is a subset of
A×A.

We use binary relations to represent relationships be-
tween the elements of A and the elements of B. If R is
a binary relation from A to B, and (x, y) ∈ A×B, then
(x, y) ∈ R if and only if the relationship holds between
the element x and the element y.

Example 6.9 Take A = {1, 2, 3}, and let R be the rela-
tion on A defined by

(x, y) ∈ R ⇔ x < y.

Then we have R = {(1, 2), (1, 3), (2, 3)}.

Example 6.10 Let A be the set of students at Auck-
land University, and let B be the set of courses. Let R
be the relation that consists of those pairs (a, b) where a
is a student in course b. For instance, if Sooyoun Lee
and Wiremu Ngata are enrolled in 225, the pair (Sooy-
oun Lee, 225) and (Wiremu Ngata, 225) belong to R. If
Sooyoun Lee is also enrolled in 220, then the pair (Sooy-
oun Lee, 220) is also in R. However, if Wiremu Ngata is
not enrolled in 220, then the pair (Wiremu Ngata, 220)
is not in R.

108 TOPIC 6. SETS, RELATIONS AND FUNCTIONS

Properties of relations

We often use infix notation for relations. In other words,
we write (x, y) ∈ R as x R y. This is particularly com-
mon with relations like <, =, ⊆ and so on that have
standard names. If (x, y) /∈ R, we write x ̸R y.

There are various properties that a relation on a set
might or might not have. We say that a relation R on a
set A is

• reflexive if for all x ∈ A, x R x.

• symmetric if for all x, y ∈ A, if x R y then y R x.

• antisymmetric if for all x, y ∈ A, if x R y and y R x
then x = y.

• transitive if for all x, y, z ∈ A, if x R y and y R z
then x R z.

Example 6.11 Consider the relation = on any set A.
Which of the above properties hold?

Example 6.12 Consider the relation < on R. Which of
the above properties hold?

Example 6.13 Consider the relation | on Z, defined by

a | b ⇔ for some c ∈ Z, b = ac.

Which of the above properties hold?

Example 6.14 Can a relation be both symmetric and
antisymmetric?

Example 6.15 A relation on a finite set S can be pic-
tured as a directed (pseudo)graph. Let the vertex set of
the graph be S and the pairs (x, y) satisfying the relation
are represented as directed edges (x, y). Draw the relation
| on the set S = {1, 2, 3, 4, 5, 6}.

6.5. EQUIVALENCE RELATIONS 109

6.5 Equivalence relations

Let A be a set. An equivalence relation on A is a binary
relation on A that is reflexive, symmetric and transitive.
We often use symbols like ∼ , ≡ and ∼= for equivalence
relations.

Example 6.16 On the set of students attending Auck-
land University, define one student to be related to an-
other whenever their surnames begin with the same letter.
Is this an equivalence relation?

Example 6.17 Let S denote the set of all people in New
Zealand. Define a relation R on S by letting x R y mean
that x has the same mother as y. Is this an equivalence
relation?

Does the answer change if we define x R y to mean that
x has the same mother or father as y?

Example 6.18 Consider the set Z of integers. Fix some
integer m > 1. Then the relation of congruence modulo
m, defined by

x≡y (mod m) ⇔ m | x− y,

is an equivalence relation.

Example 6.19 Let G = (V,E) be a simple graph. Con-
sider the binary relation on V such that, for u, v ∈ V ,
u R v if and only if there is a path from u to v. This is
an equivalence relation, which we call connectivity.

Example 6.20 Let C denote the set of all computer
programs. Define a relation ∼ on C as follows: For
C,C′ ∈ C (in other words, for any two computer pro-
grams C and C′) we write C ∼ C′ if, for all possible
program inputs x, either C and C′ both do not terminate
on input x, or else both C and C′ terminate on input x
and return the same output.

110 TOPIC 6. SETS, RELATIONS AND FUNCTIONS

Example 6.21 Let f : A → B be a function. Then the
relation ∼ f on A, defined by

x ∼ f y ⇔ f(x) = f(y)

is an equivalence relation. We call this relation the equiv-
alence relation induced by f .

Equivalence classes, partitions

Let ∼ be an equivalence relation on a set A, and let
x ∈ A. The equivalence class of x under ∼ , denoted by
[x], is the set of all elements of A that are related to x
under ∼ , i.e.

[x] = { y ∈ A : x ∼ y }

We denote the set of equivalence classes of elements of A
under ∼ by [A] or by A/∼ .

Example 6.22 Consider the relation of congruence mod-
ulo 2 on the set Z. What are [0], [1]?

Example 6.23 Let G be a simple graph and let R be the
relation of connectivity. The equivalence classes are the
connected components of the graph.

Solution. [1] = {1, − 1}, [14] = {14, − 14}, and [0] = {0}.

Equivalence class lemma

If ∼ is an equivalence relation on A, and x, y ∈ A, then
the following are equivalent:

1. x ∼ y.

2. [x] = [y].

3. [x] ∩ [y] ̸= ∅.

Proof: We show that (1) implies (2), (2) implies (3)
and (3) implies (1).

(1)⇒ (2) Suppose x ∼ y. Let z ∈ [y]. Then y ∼ z, so
we have x ∼ y ∼ z, and so by transitivity we have
x ∼ z. Thus z ∈ [x]. Hence [y] ⊆ [x]. Conversely,
let w ∈ [x]. Then x ∼ w, so by symmetry we have
w ∼ x. So w ∼ x ∼ y, and so w ∼ y. Hence y ∼ w,
so w ∈ [y]. Thus [x] ⊆ [y], so [x] = [y].

(2)⇒ (3) Suppose [x] = [y]. Then [x] ∩ [y] = [x] ∩ [x] =
[x]. By reflexivity, x ∼ x, so x ∈ [x], so [x] ̸= ∅.
Thus [x] ∩ [y] ̸= ∅.

6.6. PARTIAL ORDERINGS 111

(3)⇒ (1) Suppose [x] ∩ [y] ̸= ∅. Let z ∈ [x] ∩ [y]. Then
x ∼ z and y ∼ z. By symmetry, we have z ∼ y, so
x ∼ z ∼ y, and therefore by transitivity we have
x ∼ y.

Hence (1), (2) and (3) are equivalent.

In other words, if [x] and [y] are equivalence classes then
either [x] = [y] or [x] and [y] are disjoint. We say that
the relation ∼ partitions the set A.

Definition 6.1 A (finite) partition of a set X is a set
{X1, . . . , Xt} where Xi ⊆ X, Xi ̸= ∅ and:

1. Xi ∩Xj = ∅ when 1 ! i < j ! t;

2. X1 ∪X2 ∪ · · · ∪Xt = X.

An example of a partition is cutting a cake into pieces:
No slice of cake is empty, slices of cake have no crumbs
in common, putting the slices together forms the whole
cake.

Example 6.24 Let R be the relation on Z such that
x R y if and only if x = y or x = −y. Show that R is an
equivalence relation. What are [1], [−14], and [0]?

Solution. [1] = {1, − 1}, [14] = {14, − 14}, and [0] = {0}.

The graph representing an equivalence relation on a finite
set is a union of complete graphs (with loops at every
vertex).

6.6 Partial orderings

Introduction

A commonly used type of relation is an ordering. For
instance, words in a dictionary are ordered using a re-
lation called “lexicographical ordering”. We also order
real numbers and integers in familiar ways.

Consider the usual ordering on Z. Then the set of inte-
gers satisfying the relation is {(x, y) ∈ Z2 | x ! y}. One
can verify that this relation is reflexive, antisymmetric,
and transitive. Other relations that have these properties
can be considered to be somehow “analogous” to familiar
orderings.

Poset

A relation R on a set S is called a partial ordering or
partial order if it is reflexive, antisymmetric, and transi-
tive. A set S together with a partial ordering R is called
a partially ordered set, or poset, and is denoted by (S,R).

112 TOPIC 6. SETS, RELATIONS AND FUNCTIONS

Example 6.25 Show that the “greater than or equal”
relation (≥) is a partial ordering on the set of integers.

Example 6.26 The divisibility relation | is a partial or-
dering on the set of positive integers P = Z≥1, since it
is reflexive, antisymmetric, and transitive, as was shown
in Example 6.4. We see that (P, |) is a poset.

Example 6.27 Show that the inclusion relation ⊆ is a
partial ordering on the power set of a set S.

Example 6.28 Let A be the set of all strings over the
alphabet {0, 1}. We say that x ∈ A is a prefix of y ∈ A
if y = xv for some v ∈ A. For example 01 is a prefix of
01111, while 01 is not a prefix of 1111. Show that this
relation is a partial ordering.

Example 6.29 Let S be the set of all students in COMP-
SCI 225. Define a partial ordering ≼ such that x ≼ y if
and only if x’s height is less than or equal to y’s height.
Is (S, ≼) a poset?

Notation

In a poset the notation a ≼ b denotes that (a, b) ∈ R.
This symbol is used to emphasise the similarity to the
familiar “less than or equal to” relation. But be careful:
Just because a relation is denoted by a symbol like ≼
does not automatically imply it has exactly the same
properties as !. We write a ≺ b to mean a ≼ b, but
a ̸= b. Also, we say “a is less than b” or “b is greater
than a” if a ≺ b.

Comparable

When a and b are elements of the poset (S, ≼), it is not
necessary that either a ≼ b or b ≼ a. For instance, in
(P(Z),⊆), {1, 2} is not related to {1, 3}, and vice versa,
since neither set is contained within the other. Similarly,
in (P, |), 2 is not related to 3 and 3 is not related to 2,
since 2 "3 and 3 "2. This leads to the following definition.

6.6. PARTIAL ORDERINGS 113

The elements a and b of a poset (S, ≺) are
called comparable if either a ≼ b or b ≼ a.
When a and b are elements of S such that
neither a ≼ b nor b ≼ a, a and b are called
incomparable.

Example 6.30 In the poset (P, |), are the integers 3 and
9 comparable? Are 5 and 7 comparable?

Example 6.31 In the poset (P(S),⊆), where S = {a, b, c},
{a} is not comparable to {b}, and {a, b} is not comparable
to {b, c}.

Totally ordered set

The adjective “partial” is used to describe partial order-
ings since pairs of elements may be incomparable. When
every two elements in the set are comparable, the relation
is called a total ordering.

Definition 6.2 If (S, ≼) is a poset and every two ele-
ments of S are comparable, S is called a totally ordered
or linearly ordered set, and ≼ is called a total order or a
linear order. A totally ordered set is also called a chain.

Example 6.32 The poset (Z,!) is totally ordered, since
a ! b or b ! a whenever a and b are integers.

Example 6.33 The poset (P, |) is not totally ordered
since it contains elements that are incomparable, such
as 5 and 7.

Well ordered set

We say that (S, ≼) is a well-ordered set if it is a poset such
that ≼ is a total ordering and such that every nonempty
subset of S has a least element. (a is a least element of
(S, ≼) if a ≼ b for all b ∈ S.)

114 TOPIC 6. SETS, RELATIONS AND FUNCTIONS

Example 6.34 The most familiar example of a well-
ordered set is the set (N,!) of natural numbers, with the
usual “less than or equals” ordering.

Example 6.35 The set of ordered pairs of positive in-
tegers, P × P, with (a1, a2) ≼ (b1, b2) if a1 < b1, or if
a1 = b1, and a2 ! b2 (the lexicographic ordering), is a
well-ordered set.

Example 6.36 The set Z, with the usual ! ordering, is
not well ordered since the set of negative integers, which
is a subset of Z, has no least element.

Lexicographic order

The letters of the alphabet have a standard ordering ‘a’
< ‘b’ < · · · < ‘z’. The “dictionary” or “lexicographic”
ordering turns this ordering on letters into an ordering
on words. This is a special case of a general principle:
given an alphabet set A that is a poset one can impose an
ordering on strings over the alphabet A. We now explain
this construction.

First, we will show how to construct a partial ordering
on the Cartesian product of two posets, (A1, ≼ 1) and
(A2, ≼ 2). The lexicographic ordering ≼ on A1 × A2 is
defined by specifying that one pair is less than a second
pair if the first entry of the first pair is less than (in A1)
the first entry of the second pair, or if the first entries are
equal, but the second entry of this pair is less than (in
A2) the second entry of the second pair. In other words,
(a1, a2) is less than (b1, b2), that is

(a1, a2) ≺ (b1, b2),

either if a1 ≺ 1 b1 or if both a1 = b1 and a2 ≺ 2 b2.

We obtain a partial ordering ≼ by adding equality to the
ordering ≺ on A × B. The verification of this is left as
an exercise.

Example 6.37 Determine whether (3, 5) ≺ (4, 8), whether
(3, 8) ≺ (4, 5), and whether (4, 9) ≺ (4, 11) in the poset
(Z × Z, ≼), where ≼ is the lexicographic ordering con-
structed from the usual ! relation on Z.

Example 6.38 On Figure 6.1, indicate the set of or-

6.6. PARTIAL ORDERINGS 115

dered pairs in P× P that are less than (3, 4).

. . .

. . .

. . .

. . .

. . .

. . .

. . .

...
...

...
...

...
...

...
...

...

(1,7) (2,7) (3,7) (4,7) (5,7) (6,7) (7,7) (8,7) (9,7)

(1,4)

(1,6)

(1,5)

(1,3)

(1,2)

(1,1) (2,1)

(9,6)

(9,5)

(9,4)

(9,3)

(9,2)

(9,1)(8,1)(7,1)(6,1)(5,1)(4,1)(3,1)

(2,2)

(3,3)

(5,5)

(6,6) (8,6)

(8,5)

(8,4)

(8,3)

(8,2)

(7,6)

(7,5)

(7,4)

(7,3)

(7,2)

(6,5)

(6,4)

(6,3)

(6,2)

(5,6)(4,6)(3,6)(2,6)

(2,5)

(2,4)

(2,3)

(3,5)

(3,4)

(3,2)

(4,5)

(4,3)

(4,4)

(4,2)

(5,4)

(5,3)

(5,2)

Figure 6.1:

Cartesian product of posets

A lexicographic ordering can be defined on the Cartesian
product of n posets (A1, ≼ 1), (A2, ≼ 2), . . . , (An, ≼ n). De-
fine the partial ordering ≼ on A1 ×A2 × · · ·×An by

(a1, a2, . . . , an) ≺ (b1, b2, . . . , bn)

if a1 ≺ 1 b1, or if there is an integer i > 0 such that
a1 = b1, . . . , ai = bi, and ai+1 ≺ i+1 bi+1. In other words,
one n-tuple is less than a second n-tuple if the entry of
the first n-tuple in the first position where the two n-
tuples disagree is less than the entry in that position in
the second n-tuple.

Example 6.39 Note that (1, 2, 3, 5) ≺ (1, 2, 4, 3), since
the entries in the first two positions of these 4-tuples
agree, but in the third position the entry in the first 4-
tuple, 3, is less than that in the second 4-tuple, 4. (Here
the ordering on 4-tuples is the lexicographic ordering that
comes from the usual “less than or equals” relation on the
set of integers.)

Lexicographic ordering of strings

Consider the strings ala2 · · · am and b1b2 · · · bn on a par-
tially ordered set S. Suppose these strings are not equal

116 TOPIC 6. SETS, RELATIONS AND FUNCTIONS

in length. Let t be the minimum of m and n. The defini-
tion of lexicographic ordering is that the string a1a2 · · · am
is less than b1b2 · · · bn if and only if

(a1, a2, . . . , at) ≺ (b1, b2, . . . , bt), or
(a1, a2, . . . , at) = (b1, b2, . . . bt) and m < n,

where ≺ in this inequality represents the lexicographic
ordering of St. In other words, to determine the ordering
of two different strings, the longer string is truncated to
the length of the shorter string, namely, to t = min(m,n)
terms. Then the t-tuples made up of the first t terms of
each string are compared using the lexicographic ordering
on St. One string is less than another string if the t-tuple
corresponding to the first string is less than the t -tuple
of the second string, or if these two t-tuples are the same,
but the second string is longer. The verification that this
is a partial ordering is left as an exercise.

Directed graph

We can draw a directed graph of a poset (called a Hasse
diagram or lattice diagram) as follows. Each element of
the poset is represented by a dot, called a vertex. An
arrow, called a directed edge, is drawn from element a to
element b if a ≼ b. The diagram in Figure 6.2(a) is a
digraph of the poset ({1, 2, 3, 4},!).

Redundant edges

Many edges in the directed graph for a finite poset do
not have to be shown since they must be present. For
instance, consider the directed graph for the partial or-
dering {(a, b) | a ! b} on the set {l, 2, 3, 4}, shown
in Figure 6.2(a). Since this relation is a partial order-
ing, it is reflexive, and its directed graph has loops at all
vertices.

Consequently, we do not have to show these loops since
they must be present; in Figure 6.2(b) loops and arrows
are not shown.

6.6. PARTIAL ORDERINGS 117

4

3

2

1

(a)

4

3

2

1

(b)

4

3

2

1

(c)

Figure 6.2:

Because a partial ordering is transitive, we do not have
to show those edges that must be present because of
transitivity. For example, in Figure 6.2(c) the edges
(1, 3), (1, 4), and (2, 4) are not shown since they must
be present. If we assume that all edges are pointed “up-
ward” (as they are drawn in the figure), we do not have
to show the directions of the edges; Figure 6.2(c) does
not show directions.

Hasse diagrams

To draw the diagram, execute the following procedure.
Start with the directed graph for this relation. Draw it
so that arrows are always pointing upwards. Because a
partial ordering is reflexive, a loop is present at every
vertex. Remove these loops. Remove all edges whose
presence is imposed by transitivity. For instance, if (a, b)
and (b, c) are in the partial ordering, remove the edge
(a, c), since it must be present also. Furthermore, if (c, d)
is also in the partial ordering, remove the edge (a, d),
since is must be present also. Finally, arrange each edge
so that its initial vertex is below its terminal vertex (as
it is drawn on paper). Remove all the arrows on the
directed edges, since the direction on the edges is now
indicated by which vertices are “higher” on the page.
Note that Hasse diagrams never have horizontal
edges!

These steps are well-defined, and only a finite number of
steps need to be carried out for a finite poset. When all
the steps have been taken, the resulting diagram contains
sufficient information to find the partial ordering. This
diagram is called a Hasse diagram, named after the 20th
century German mathematician Helmut Hasse.

118 TOPIC 6. SETS, RELATIONS AND FUNCTIONS

Example 6.40 Draw the Hasse diagram representing the
partial ordering {(a, b) : a | b} on {1, 2, 3, 4, 6, 8, 12}.

Example 6.41 Draw the Hasse diagram for the poset
(P(S),⊆), where S is the set {a, b, c}.

Maximal and minimal elements

For many applications it is useful to be able to identify
certain extremal elements of partially ordered students.
For example, a prize might be given to the student in a
course with the highest grade.

An element of a poset is called maximal if it is not less
than any element of the poset. That is, a is maximal in
the poset (S, ≼) if there is no b ∈ S such that a ≺ b.
Similarly, an element of a poset is called minimal if it is
not greater than any element of the poset. That is, a is
minimal if there is no element b ∈ S such that b ≺ a.
Maximal and minimal elements are easy to spot using
a Hasse diagram. They are the elements with nothing
above them or with nothing below them.

Example 6.42 Which elements of the poset

({2, 4, 5, 10, 12, 20, 25}, |)

are maximal, and which are minimal?

Greatest and least elements

Sometimes there is an element in a poset that is greater
than every other element. Such an element is called the
greatest element. That is, a is the greatest element of the
poset (S, ≼) if b ≼ a for all b ∈ S. The greatest element
is unique when it exists. Likewise, an element is called
the least element if it is less than all the other elements
in the poset. That is, a is the least element of (S, ≼) if
a ≼ b for all b ∈ S. The least element is unique when it
exists.

Example 6.43 Determine whether the posets represented
by the Hasse diagrams in Figure 6.3 have a greatest ele-
ment and a least element. Determine whether the posets
have maximal and minimal elements. Is a maximal el-
ement always a greatest element? Is a greatest element

6.6. PARTIAL ORDERINGS 119

always a maximal element?

(d)(c)

(a) (b)

a

b c

dd

c

a b

a

b c d d e

c

a b

Figure 6.3:

120 TOPIC 6. SETS, RELATIONS AND FUNCTIONS

Example 6.44 Let S be a set. Determine whether there
is a greatest element and a least element in the poset
(P(S),⊆).

Solution. The least element is the empty set, since ∅ ⊆ T for
any subset T of S. The set S is the greatest element in this poset,
since T ⊆ S whenever T is a subset of S.

Example 6.45 Is there a greatest element and a least
element in the poset (P, |)?

Solution. The integer 1 is the least element since 1 | n whenever
n is a positive integer. Since there is no integer that is divisible
by all positive integers, there is no greatest element.

* Upper and lower bounds

Let (S, ≼) be a poset and A ⊆ S a subset of it. Then
(A, ≼) is also a poset. Sometimes it is possible to find
an element in S that is greater than all the elements in
the subset A. An element u ∈ S such that a ≼ u for all
elements a ∈ A is called an upper bound of A. Likewise,
an element l ∈ S such that l ≼ a for all elements a ∈ A
is called a lower bound of A.

Example 6.46 Find the lower and upper bounds of the
subsets {a, b, c}, {j, h}, and {a, c, d, f} in the poset with
the Hasse diagram shown below

a

b

d

g

h
j

f

e

c

Figure 6.1

6.6. PARTIAL ORDERINGS 121

* Least upper bound and greatest lower bound

An element x is called the least upper bound of the subset
A if x is an upper bound that is less than every other
upper bound of A. Since there is only one such element,
if it exists, it makes sense to call this element the least
upper bound. That is, x is the least upper bound of A
if a ≼ x whenever a ∈ A, and x ≼ z whenever z is an
upper bound of A. Similarly, the element y is called the
greatest lower bound of A if y is a lower bound of A and
z ≼ y whenever z is a lower bound of A. The greatest
lower bound of A is unique if it exists. The greatest lower
bound and least upper bound of a subset A are denoted
by glb(A) and lub(A), respectively.

Example 6.47 Find the greatest lower bound and the
least upper bound of {b, d, g}, if they exist, in the poset
shown in Figure 6.6.

Example 6.48 Find the greatest lower bound and the
least upper bound of the sets {3, 9, 12} and {1, 2, 4, 5, 10}
if they exist, in the poset (P, |).

Solution. An integer is a lower bound of {3, 9, 12} if 3, 9, and
12 are divisible by this integer. The only such integers are 1 and
3. Since 1 | 3, 3 is the greatest lower bound of {3, 9, 12}. The
only lower bound for the set {1, 2, 4, 5, 10} with respect to | is the
element 1. Hence, 1 is the greatest lower bound for {1, 2, 4, 5, 10}.

Relational Calculus

There are various operations that can be performed on
relations to obtain a new relation.

Complement relation

Let R be a binary relation from A to B, so that R ⊆
A×B. The complement relation is R′ = (A×B) \R. In
other words, a R b if and only if a ̸R′ b.

Example 6.49 The complement of the binary relation
< on R is ≥.
The complement of the binary relation = on R is ̸=.

122 TOPIC 6. SETS, RELATIONS AND FUNCTIONS

Converse relation

Let R be a binary relation from A to B, so that R ⊆
A×B. The converse relation is R′ ⊆ B ×A defined by

R′ = {(b, a) ∈ B ×A : (a, b) ∈ R}.

Example 6.50 The converse of the binary relation < on
R is ≥.
The converse of the binary relation = on R is =.

Notice that, unlike the inverse function f−1, which only
exists if f is a bijection, the converse relation always
exists for any relation.

Relational images and preimages

If R is a relation from A to B and we have C ⊆ A,
D ⊆ B, then we define the relational image of C under
R, R(C), by

R(C) = { y ∈ B : ∃x ∈ C (x R y) }

and we define the relational preimage of D under R by

R←(D) = { x ∈ A : ∃y ∈ D (x R y) }.

In the special case where the relation is a function f , we
can rewrite these definitions as

f(C) = { f(x) : x ∈ C }
f←(D) = { x ∈ A : f(x) ∈ D }.

Example 6.51 Let S = {1, 2, 3, 4}. Define a relation R
from S to S by letting x R y mean x < y. Then find

a R ({1, 2})

b R ({3})

c R← ({2, 3})

d R← ({4})

Example 6.52 Consider the relation | on Z, defined by

a | b ⇔ for some c ∈ Z, b = ac.

Find:

a R ({12})

b R← ({12})

Solution. R ({12}) = {... − 36, − 24, − 12, 0, 12, 24, 36, ...}

6.7. FUNCTIONS 123

R← ({12}) = {± 1, ± 2, ± 3, ± 4, ± 6, ± 12}

Union and Intersection operations

Let R1 and R2 be two binary relations on A × B. We
define the union

R1 ∪R2 = {(a, b) ∈ A×B : (a, b) ∈ R1 ∨ (a, b) ∈ R2}.

Example 6.53 The union of the relations = and > on
R is ≥.

Let R1 and R2 be two binary relations on A × B. We
define the intersection

R1 ∩R2 = {(a, b) ∈ A×B : (a, b) ∈ R1 ∧ (a, b) ∈ R2}.

Example 6.54 The intersection of the relations ≥ and
! on R is =.

6.7 Functions

Let A and B be sets. Informally, a function f from A to
B is a rule that assigns, to each element x of A a unique
element f(x) of B, called the image of x under f .

Formally, a function is a special type of relation. A func-
tion from A to B is a binary relation f from A to B such
that for every x ∈ A there is exactly one y ∈ B such that
(x, y) ∈ f . We never use infix notation for functions: in-
stead, we use the notation we are already familiar with,
by abbreviating (x, y) ∈ f as y = f(x).

We indicate that f is a function from A to B by writing
f : A → B. We call A the domain of f , denoted by
Dom(f), and B the codomain of f . Note that not every
element of B has to be the image of some element of A:
the set of all such elements of B is called the range or
image of f , in other words

Im(f) = { y : for some x ∈ Dom(f), y = f(x) }.

124 TOPIC 6. SETS, RELATIONS AND FUNCTIONS

A Bf

BA

x

f

f(x)

Figure 6.2

Example 6.55 Let X be the set of all real numbers be-
tween 0 and 100 inclusive, and let Y be the set of all
real numbers between 32 and 212 inclusive. The function
F : X → Y that assigns to each Celsius temperature c its
corresponding Fahrenheit temperature F (c) is defined by

F (c) =
9

5
c+ 32

What are the domain, codomain and image of F?

6.8 Equality of functions

We say the functions f : A→ B and g : C → D are equal
if

• A = C (the functions have the same domain);

• B = D (the functions have the same codomain);

• f(a) = g(a) for all a ∈ A (the functions ‘agree’ on
A).

In other words, all three things making up the function
must be the same.

The range of a function

We define the range or image of f : A→ B as the set

Im(f) = {f(a) : a ∈ A}.

6.9. FUNCTION COMPOSITION 125

This is the set of all values of f taken (in B) by f .

Example 6.56

• The negation function f : Z→ Z (taking n to −n)
has range Z itself.

• The successor function S : N → N (which takes n
to n+1) has range N\{0} = {1, 2, 3, 4, 5, 6, 7, . . .}.

• The squaring function f : Z→ Z (which takes n to
n2) has range {0, 1, 4, 9, 16, 25, 36, 49, 64, 81, . . .}.

• The range of the sign function σ : Z→ Z is {−1, 0, 1}.

6.9 Function composition

Let f : A → B and g : B → C be functions. We define
the composition g ◦ f : A → C by declaring that, for
every x ∈ A,

(g ◦ f)(x) = g(f(x)).

x

A B

f(x)

C

g(f(x))

g ◦ f

gf

Figure 6.3

Composition is associative

If f : A → B, g : B → C and h : C → D are functions
then

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

Proof: Notice that h ◦ (g ◦ f) and (h ◦ g) ◦ f both have
domain A and codomain D. For every x ∈ A we have

(h ◦ (g ◦ f))(x) = h(g ◦ f(x))
= h(g(f(x)))

= h ◦ g(f(x))
= ((h ◦ g) ◦ f)(x)

So h ◦ (g ◦ f) and (h ◦ g) ◦ f have the same domain, and
take the same values for every element of the domain,
that is they are equal.

126 TOPIC 6. SETS, RELATIONS AND FUNCTIONS

6.10 Partial functions

A partial function f : A → B is a weaker form of a
function, still having an input set A and an output set
or codomain B, but with a rule f that assigns to each
element a of a subset of A a unique element f(a) of B.

In other words, a partial function is defined for just some
of the elements of its input set.

For example, take A = B = R and define f(x) = 1/x
when x is non-zero.

The domain of a partial function f : A → B is the set
of all a ∈ A for which f(a) is defined. Hence if D is the
domain of f , then the restriction h of f to D is a function
h : D → B.

The range of a partial function f : A→ B is still the set
of values it takes, i.e. {f(a) : a ∈ D}, where D is the
domain.

A partial function f : A → B is called a total function
(or just a function) if its domain is A.

Equality of partial functions

The partial functions f : A→ B and g : X → Y are equal
if

• A = X (the functions have the same input set).

• B = Y (the functions have the same output set).

• The functions have the same domain, say D, and

• f(a) = g(a) for all a ∈ D (i.e. the functions ‘agree’
on D).

6.11 Types of functions

1–1 and onto

We say that f : A → B is 1–1 or injective if, for every
x, y ∈ A with x ̸= y we have f(x) ̸= f(y) (or, equiva-
lently, if f(x) = f(y) implies that x = y).

We say that f is onto or surjective if, for every y ∈ B
there is some x ∈ A with f(x) = y (or, equivalently, if
Im(f) = B).

We say that f is a 1–1 correspondence or bijection if it
is both 1–1 and onto.

6.11. TYPES OF FUNCTIONS 127

One-to-one functionOnto function

Not a functionOne-to-one

correspondence

Figure 6.4

Identity function, inverse function

For any set A, we define the identity function 1A : A→ A
by declaring that, for every x ∈ A,

1A(x) = x.

Notice that 1A is a bijection. If f : A→ B is a function
then f ◦ 1A = f = 1B ◦ f .
Warning: Be careful not to confuse the identity function
1A with the constant function f(x) = 1 for all x ∈ A.

Let f : A → B be a function. An inverse of f is a
function g : B → A such that g ◦ f = 1A and f ◦ g = 1B.

Inverses are unique

If f has an inverse g, then it is unique. To prove this,
note that if h is also an inverse of f then

h = h ◦ 1B
= h ◦ (f ◦ g)
= (h ◦ f) ◦ g
= 1A ◦ g
= g

If f has an inverse, it is denoted by f−1.

128 TOPIC 6. SETS, RELATIONS AND FUNCTIONS

Invertible functions are bijections

Theorem 6.1 If f : A → B is a function, then f has
an inverse if and only if f is a bijection.

Proof: Suppose first that f is a bijection. If y ∈ B
then there is some x ∈ A with f(x) = y. Since f is 1–1,
this x is unique. So we can define g : B → A by

g(y) = the unique x ∈ A such that f(x) = y.

For any x ∈ A we have g(f(x)) = x, and for every y ∈ B
we have f(g(y)) = y. So g = f−1.

Conversely, suppose that f has an inverse. We must show
f is 1–1 and onto.

f is 1–1 Suppose x, y ∈ A with f(x) = f(y). Then
f−1(f(x)) = f−1(f(y)), that is x = y.

f is onto Let y ∈ B. Put x = f−1(y). Then y = f(x).

So f is a bijection, as required.

Example 6.57 Let f be the function from {a, b, c} to
{1, 2, 3} such that f(a) = 2, f(b) = 3, f(c) = 1. Is f
invertible? If it is, what is its inverse?

Example 6.58 Let f be the function from Z to Z with
f(x) = x2. Is f invertible?

What about if we restrict it to a function from N to N?

Example 6.59 Let f be the function from Z to Z with
f(x) = 2x. Is f invertible?

Solution. No. f is not onto as Im(f) = {x : x = 2p, p ∈ Z},
and Im(f)⊂ Z. So f is not invertible.

Preimages

If a function is not invertible all is not lost. We call the
set of elements in the domain of a function f : S → T
that are mapped to y ∈ T by f the preimage of y under
f . This is denoted by f←(y).

6.11. TYPES OF FUNCTIONS 129

f←(y) = {x : f(x) = y}

We can also consider the preimage of a set.

f←(B) = {x : f(x) ∈ B,B ⊆ T }

Example 6.60 Let f be the function from Z to Z with
f(x) = x2. What is the preimage of 4? What is the
preimage of {4, 9}?

130 TOPIC 6. SETS, RELATIONS AND FUNCTIONS

Enumeration

7.1 Introduction

In this section we will consider problems involving count-
ing the number of ways that we can choose a number of
objects. These basically fall into two types: arrangement
problems in which the order in which we make the choices
is significant, and selection problems in which the order
is not significant.

We have three basic rules in solving these problems.

The union rule: Let A1, A2, . . . , Ak be finite, disjoint
sets (i.e. finite sets such that, for i ̸= j, Ai ∩ Aj =

∅). Then |
⋃k

i=1 Ai| =
∑k

i=1 |Ai|.

The product rule: Let S be a set of ordered k-tuples
(s1, s2, . . . , sk) such that, for each i = 1, 2, . . . , k
and each possible choice of s1, s2, . . . , si−1, there
are ni possible choices for si. Then |S| = n1n2 · · ·nk.

The counting lemma: Let A and B be finite sets and
let ψ : A → B be a function such that, for every
b ∈ B, |ψ←(b)| = r. Then |B| = |A|/r. (Here
ψ←(b) = { a ∈ A : ψ(a) = b }.)

7.2 Arrangement problems

Arrangements with replacement

We have n different types of object and we want to put
r of them in a row. The ordering matters. We have an
unlimited supply of each type of object. How many ways
can we do this?

This is a straightforward use of the product rule. For
example consider 4 consecutive throws of a 6-sided dice.
The first throw gives us one out of six numbers, as does
the second, third and fourth. Hence the number of possi-
ble results is 64. In general, the number of arrangements
of r things from a set of n things with replacement is

nr.

Example 7.1 How many car number plates can be made
up out of 3 letters (‘A’,. . . ,‘Z’) followed by 4 digits (‘0’,. . . ,‘9’)

131

132 TOPIC 7. ENUMERATION

Arrangements without replacement

Given a set X , an r-permutation of X is an arrangement
of r of the elements of X in order, with no repetition of
elements. We denote the number of r-permutations of
a set with n elements by P (n, r). By the product rule,
there are n(n − 1)(n − 2) · · · (n − r + 1) r-permutations
of X . So we have

P (n, r) = n(n− 1)(n− 2) · · · (n− r + 1) =
n!

(n− r)!
.

In the case r = n, we simply refer to a permutation of
X . The number of permutations of an n-element set is
P (n, n) = n!.

Example 7.2 In how many ways can we choose a chair-
person, vice-chairperson, secretary, and treasurer from a
group of 10 persons?

Example 7.3 Imagine a row of 5 chairs in a room.
There are 7 persons in the room. In how many ways
can 5 among them sit on the row of chairs?

Example 7.4 Three men and three women are going to
occupy a row of six seats. In how many different orders
can they be seated so that men occupy the two end seats?

Arrangements with repetitions

In many cases, we do not want to consider all the per-
mutations of X as being distinct. For example, if we
regard the two Gs in EGG as being identical, then there
are only 3 ways to arrange the letters of the word EGG,
rather than 3! = 6.

Suppose that the elements of a set X are partitioned into
k disjoint sets X1, X2, . . . , Xk with |Xi| = ni.

• We wish to count the number of types of arrange-
ment of the elements of X , in which two arrange-
ments are deemed to be of the same type if the
corresponding terms come from the same set Xi.

• We let A denote the set of arrangements of the ele-
ments of X , and B the set of types of arrangement.

• If ψ : A → B is the function which takes a given
arrangement to its type, then, for every b ∈ B,
|ψ←(b)| = n1!n2! · · ·nk!.

7.3. SELECTIONS 133

• So by the counting lemma we have

|B| = |A|
n1!n2! · · ·nk!

=
n!

n1!n2! · · ·nk!
.

Example 7.5 How many strings can be formed using the
following letters?

WHANGAMOMONA

Example 7.6 How many distributions of ten different
books are possible if Vanessa is to receive 5 books, Paul
is to receive 3 books, and Rachel is to receive 2 books?

Example 7.7 A playoff between two teams consists of at
most five games. No games end in a draw. The first team
that wins three games wins the playoff. In how many
ways can the playoff occur?

Example 7.8 Three jars of rhubarb jam and three jars of
manuka honey are to be put in a row on a shelf. In how
many different orders can they be placed so that there is
a jar of jam at each end of the shelf?

7.3 Selections

We now consider counting problems in which the order
we make our choices does not matter. In other words,
instead of choosing an ordered r-tuple of elements of a
set X , we are going to choose an r-element subset of
X . We denote the number of r-element subsets of an
n-element set by C(n, r), or

(
n
r

)
.

To calculate
(n
r

)
, let X be an n-element set, let A be

the set of r-permutations of X and let B be the set of
r-element subsets of X . Define ψ : A→ B by

ψ((x1, x2, . . . , xr)) = {x1, x2, . . . , xr}.

Then, for any Y ∈ B, ψ←(Y) is the set of permutations
of Y , which has cardinality P (r, r) = r!. So, by the
counting lemma, we have

(
n

r

)
= |B| = |A|

r!
=

n!

(n− r)!r!
.

134 TOPIC 7. ENUMERATION

The numbers
(n
r

)
are called binomial coefficients . Some

of their properties are given in section 7.5.

Example 7.9 An ordinary deck of 52 cards consists of
four suits (clubs, diamonds, hearts, and spades) of 13
denominations each (ace, 2-10, jack, queen, king).

(a) How many (unordered) five-card poker hands, se-
lected from an ordinary 52-card deck, are there?

(b) How many poker hands contain cards all of the same
suit?

(c) How many poker hands contain three cards of one
denomination and two cards of a second denomi-
nation?

Example 7.10 In a non-standard set of 40 playing cards
(10 cards of 4 different suits) how many distinct four-card
hands contain cards comprising of exactly

(a) one suit?

(b) two suits?

(c) three suits?

(d) four suits?

Solution.

(a)
(4
1

)(10
4

)
= 840.

(b)
(4
2

) [(10
3

)(10
1

)
+

(10
2

)(10
2

)
+

(10
1

)(10
3

)]
= 26, 550.

(c)
(4
3

) [(10
2

)(10
1

)(10
1

)
+

(10
1

)(10
2

)(10
1

)
+

(10
1

)(10
1

)(10
2

)]
= 54, 000.

(d)
(4
4

)(10
1

)(10
1

)(10
1

)(10
1

)
= 10, 000.

Example 7.11 Suppose a class of 12 students is to be
divided into four study groups of three students. In how
many ways can this be done (a) if the groups study dif-
ferent subjects; (b) if the groups study the same subject?

7.4. SELECTIONS WITH REPETITIONS ALLOWED 135

Example 7.12 A certain class consists of 16 men and 13
women. How many different committees can be chosen
from this class if the committees consist of:

(a) 9 people?

(b) 5 men and 4 women?

(a) 9 men or 9 women?

Solution.

(a)
(29
9

)
= 10, 015, 005.

(b)
(16
5

)
×

(13
4

)
= 3, 123, 120.

(c)
(16
9

)
+

(13
9

)
= 11, 440 + 715 = 12, 155.

Example 7.13 How many routes are there from the
lower left corner of an n × n square grid to the upper
right corner if we are restricted to traveling only to the
right or upward?

Figure 7.1

Example 7.14 An investor is going to invest $16,000 in
four stocks chosen from a list of twelve prepared by her
broker. How many different investments are possible if

(a) $4000 is to be invested in each stock?

(b) $6000 is to be invested in one stock, $5000 in an-
other, $3000 in the third, and $2000 in the fourth?

7.4 Selections with repetitions allowed

Suppose we have a bag containing a large number of mar-
bles in each of three colors: brown, yellow and blue. In

136 TOPIC 7. ENUMERATION

how many ways can we select 5 marbles from the bag?
In this case we are selecting 5 objects from 3 types, with
order unimportant and with repetition allowed.

To answer this question, we will exhibit a 1–1 corre-
spondence between the set of solutions and the set of
sequences of 5 0s and 2 1s. The correspondence is as
follows: a selection of i brown marbles, j blue marbles
and p yellow marbles corresponds to the sequence of i 0s
followed by a 1 followed by j 0s followed by a 1 followed
by p 0s. For example, the selection “1 brown, 0 blue, 4
yellow” corresponds to the sequence 0110000.

So now we just need to work out how many sequences of
5 0s and 2 1s there are. Well, there are 7 symbols, and
we must select the 2 places to put the 1s. So the answer
is
(7
2

)
.

In general, the number of ways of selecting n objects
from k types, with order unimportant but with repetition
allowed, is (

n+ k − 1

k − 1

)
.

= number of ways of selecting n objects of k different types

= number of ways of placing n indistinguishable objects into k bins

= number of ways of arranging n objects and k − 1 dividers

In Section 7.5 we learn that
(
n+ k − 1

k − 1

)
=

(
n+ k − 1

n

)
.

If k is greater than n then it is easier to calculate the
expression to the right.

Example 7.15 A bakery sells 8 varieties of muffins. Ap-
ple, banana, blueberry, cheese, chocolate, double choco-
late, peach and everyone’s favorite, broccoli. How many
ways are there to select

1. 16 muffins?

2. 16 muffins with at least one of each kind?

3. 16 muffins with at least two peach and at least three
chocolate?

4. 16 muffins with no more than two broccoli?

5. 16 muffins with at least two cheese, at least three
chocolate and no more than two broccoli muffins?

Example 7.16 Donut King makes four different types
of donuts.

(a) How many different assortments of one dozen donuts
can be purchased?

7.5. SOME PROPERTIES OF BINOMIAL COEFFICIENTS 137

(b) How many different assortments of one dozen donuts
can be purchased that include at least one donut of
each type?

(c) How many different assortments of one dozen donuts
can be purchased that include no more than three
chocolate donuts?

Example 7.17 A math lecturer is about to assign grades
of A, B, C or D, where D is a failing grade, to his class
of 100 students. How many different grade distributions
are possible if:

1. Any distribution is allowed.

2. No more than 80% of the students may pass.

3. No fewer than 50% of the students may pass.

4. No more than 20% of the students may get A grades.

5.* Conditions 2, 3 and 4 apply.

Example 7.18 A generous eccentric withdraws $700 in
$100 notes from the bank. He meets 3 strangers in the
street on his way home and gives all this money away to
them.

(a) In how many ways can the money be distributed among
the 3 strangers?

(b) In how many ways can the money be distributed
among the 3 strangers if each stranger gets at least
$100?

Solution.

(a)
(7+3−1

3−1

)
= 36.

(b)
(4+3−1

3−1

)
= 15. First give $100 to each stranger and then

share out the remaining $400.

7.5 Some properties of binomial coefficients

We now describe some of the facts about the binomial
coefficients

(n
k

)
. First, the reason for the name.

Fact 1: for any real numbers a and b, and any n ∈ N,

(a+ b)n =
n∑

k=0

(
n

k

)
an−kbk.

138 TOPIC 7. ENUMERATION

This is the binomial theorem. We will prove this later,
using induction and Fact 3 (below).

Fact 2: For any n ∈ N and k ∈ {0, 1, . . . , n},
(
n

k

)
=

(
n

n− k

)
and

(
n

0

)
=

(
n

n

)
= 1.

This is because the number of ways of selecting k objects
is the same as the number of ways of selecting which n−k
objects to omit.

Fact 3 (Pascal’s Identity): For any n ∈ N and k ∈
{0, 1, . . . , n},

(
n+ 1

k + 1

)
=

(
n

k + 1

)
+

(
n

k

)
.

This is because we can choose k + 1 of the n+ 1 objects
either by choosing k+1 of the first n objects or by choos-
ing k of the first n objects together with the (n + 1)th

object.

Example 7.19 Let n be a positive integer. Show that

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

n− 1

)
+

(
n

n

)
= 2n.

7.6 The inclusion/exclusion principle

We know that if A and B are disjoint sets then |A∪B| =
|A|+ |B|. What if A and B are not disjoint? In counting
|A|+ |B|, we have counted the elements of A ∩B twice,
so if we subtract |A ∩ B|, we will get the right number.
In other words,

|A ∪B| = |A|+ |B|− |A ∩B|.

What about three sets A, B and C? As before, in count-
ing |A| + |B| + |C| the elements of A ∩ B, A ∩ C, and
B ∩ C will be counted more than once. If we subtract(
|A∩B|+ |A∩C|+ |B ∩C|

)
, we will have dealt properly

with elements which are in two of the sets. However, ele-
ments of A∩B∩C will have been added three times and
subtracted three times, so we must add them in again to
get

|A ∪B ∪ C| =
(
|A|+ |B|+ |C|

)

−
(
|A ∩B|+ |A ∩ C|+ |B ∩ C|

)

+|A ∩B ∩ C|.
In general, let A1, A2, . . . , An be sets. Let I = {1, 2, . . . , n}.
For 1 ! k ! n, let Pk = { J ⊆ I : |J | = k }. Then

∣∣∣
n⋃

i=1

Ai

∣∣∣ =
n∑

k=1

[
(−1)k−1

∑

J∈Pk

∣∣∣
⋂

i∈J
Ai

∣∣∣

]
. (∗)

This result is known as the inclusion/exclusion prin-
ciple.

7.6. THE INCLUSION/EXCLUSION PRINCIPLE 139

Proof of the inclusion/exclusion principle

To prove this result, consider the contribution of a typ-
ical element x of

⋃n
i=1 Ai to the right hand side of the

equation. Suppose that x is in m of the sets, namely
Ai1 , Ai2 , . . . , Aim . First, fix some k with 1 ! k ! n. The
contribution of x to

∑
J∈Pk

∣∣⋂
i∈J Ai

∣∣ is the number of
sets in Pk which are subsets of {i1, i2, . . . , im}, in other
words the number of k-element subsets of an m-element
set, which is

(m
k

)
. In particular, x contributes nothing if

k > m. So the total contribution of x to the right hand
side of (∗) is

m∑

k=1

[
(−1)k−1

(
m

k

)]
= 1−

(
m∑

k=0

(
m

k

)
(−1)k

)

= 1− (1 + (−1))m

= 1

Using the inclusion/exclusion principle

Example 7.20 Suppose that there are 1807 first year
students at Auckland University. Of these, 453 are taking
a course in biology, 567 are taking a course in chemistry,
and 299 are taking courses in both biology and chemistry.
How many are not taking a course in either biology or in
chemistry?

Example 7.21 How many numbers between 1 and 1000
are divisible by 3, 5 or 7?

Solution. For each n ∈ P = Z≥1, let Mn denote the set of
numbers between 1 and 1000 which are divisible by n. Then |Mn| =⌊ 1000

n

⌋
. Notice that Mm ∩Mn = Ml, where l is the least common

multiple of m and n. By the inclusion/exclusion principle, we have

|M3 ∪M5 ∪M7|
=

(
|M3|+ |M5|+ |M7|

)

−
(
|M3 ∩M5|+ |M3 ∩M7|+ |M5 ∩M7|

)

+
(
|M3 ∩M5 ∩M7|

)

=
(
|M3|+ |M5|+ |M7|

)

−
(
|M15|+ |M21|+ |M35|

)
+

(
|M105|

)

= (333 + 200 + 142) − (66 + 47 + 28) + 9

= 543

Example 7.22 Among a group of 200 Auckland Uni-
versity students, 19 study French, 10 study German, and
28 study Spanish. If 3 study both French and German,
8 study both French and Spanish, 4 study both German

140 TOPIC 7. ENUMERATION

and Spanish, and 1 studies French, German, and Span-
ish, how many of these students are not studying French,
German, or Spanish?

7.7 The pigeonhole principle

In its simplest form, the pigeonhole principle states that
if m objects (maybe letters or pigeons) are placed into
n boxes (called “pigeonholes”), and m > n, then one
pigeonhole must receive at least two objects.

General pigeonhole principle

In general, if the number of objects is more than k times
the number of pigeonholes, then some pigeonhole must
contain at least k + 1 objects.

In general, if the elements of a set with N elements are
partitioned into k subsets, then one of the subsets must
contain at least

⌈
N
k

⌉
elements.

(Note ⌈ ⌉ is the ceiling function. ⌈x⌉ means take the
smallest integer which is greater than or equal to x. For
example ⌈9.1⌉ = 10.)

Proof: Suppose A is a set with |A| = N , and A is
partitioned into subsets A1, A2, . . . , Ak. In other words,
A1, A2, . . . , Ak are disjoint sets whose union is the whole
of A. Let x = N

k . Suppose that |Ai| < x for each i. Then

N =
k∑

i=1

|Ai|

<
k∑

i=1

x

= kx

= N

This contradiction shows that there must be at least one
i such that |Ai| ≥ x. But then, since |Ai| is an integer,
we must have |Ai| ≥ ⌈x⌉, ie |Ai| ≥

⌈
N
k

⌉
, as required.

Example 7.23 How many students must be in a class
to guarantee that at least two students receive the same
score on the final exam, if the exam is graded on a scale
from 0 to 100 points?

7.7. THE PIGEONHOLE PRINCIPLE 141

Example 7.24 Suppose that 83 marbles are to put into 9
bags. Then one bag must receive at least

⌈
83
9

⌉
= ⌈9.22⌉ =

10 marbles.

Example 7.25 How many people must be selected from a
collection of fifteen married couples to ensure that at least
two of the persons chosen are married to each other?

Example 7.26 Choose any five points from the interior
of an equilateral triangle having sides of length 1. Show
that the distance between some pair of these points does
not exceed 1

2 .

Example 7.27 Show that, among a collection of n2 + 1
objects, there are either n+1 which are identical or n+1
which are all different.

Solution. Let p = ‘the number of sets of identical objects’.

There are now two possibilities, either p ≤ n or p > n.

(i) Suppose that p ≤ n, then n2+1
p > n, therefore some set of

identical objects contains at least n + 1 objects. That is, at least
n+ 1 objects are identical.

(ii) Suppose that p > n, then there are at least n+1 sets of identical
objects. That is, at least n+ 1 objects are all different.

Hence, among a collection of n2 +1 objects, there are either n+1
which are identical or n+ 1 which are all different.

142 TOPIC 7. ENUMERATION

7.8 * Trickier pigeonhole applications

We now give some examples which show how the pigeon-
hole principle can be used to solve non-trivial problems.

Example 7.28 Let A ⊆ {1, 2, . . . , 14} with |A| = 6.
Show that A has distinct subsets B and C such that the
sum of the elements of B equals the sum of the elements
of C.

Example 7.29 Assume that in a group of six people,
each pair of individuals consists of two friends or two
enemies. Show that there are either three mutual friends
or three mutual enemies.

Example 7.30 During a month with 30 days a netball
team plays at least 1 game a day, but no more than 45
games. Show that there must be a period of some num-
ber of consecutive days during which the team must play
exactly 14 games.

Deterministic Finite Automata

8.1 Alphabet and strings

Alphabet

Let Σ be a finite alphabet. When Σ contains k letters, we
say Σ is a k-letter alphabet. A 1-letter alphabet is a unary
alphabet, and a 2-letter alphabet is a binary alphabet.
Our typical binary alphabet is {a, b}. A finite sequence
of symbols from Σ is called a string or word.

Strings

Each string v is of the form σ1σ2 . . .σn, where σi ∈ Σ.
The length of v, denoted by |v|, is the number of symbols
it has. Thus, |abb| = 3, |baba| = 4, and |a| = 1.

The string of length 0 is called the empty string. It is
denoted λ.

There are kn strings of length n over a k-letter alphabet.

Concatenation operation

The set of all strings over the alphabet Σ is

Σ⋆ = {σ1σ2 . . .σm | σ1,σ2, . . . ,σm ∈ Σ, m ∈ N}.

We denote strings by the letters u, v, w,

The concatenation of u and v is obtained by writing u
followed by v. Concatenation is denoted by u · v. We
have:

u · (v · w) = (u · v) · w.

Note that for any string u, because λ is the empty string,
we have λ · u = u · λ = u.

We sometime write uv, instead of u · v.

Substrings

For a string u we denote by un the following string:

un = u · u · . . . · u.︸ ︷︷ ︸
n times

If a string w occurs in a string u, we say that w is a
substring of u . That is, w is a substring of u if u = u1wu2

for some strings u1 and u2. One can see that every string
u is a substring of itself (take u1 = u2 = λ).

A string w is a prefix of a string u if u can be written as
wu1.

For example, The prefixes of aabbba are λ, a, aa, aab,
aabb, aabbb and aabbba.

143

144 TOPIC 8. DETERMINISTIC FINITE AUTOMATA

Languages

A language over an alphabet Σ is a subset of Σ⋆.

Here are some examples of languages:

1. ∅, Σ⋆, {an | n ∈ N}, {aba, bab}.

2. {w ∈ {a, b}⋆ | bab is a substring of w}.

3. {w ∈ Σ⋆ | w has even length }.

4. {w ∈ Σ⋆ | w has a substring aba}.

We denote languages by U , V , W , L,

8.2 Operations on languages

Boolean operations

Let U and V be languages over an alphabet Σ. The
following operations on languages are called Boolean op-
erations :

1. The union of U and V is U ∪ V ,

2. The intersection of U and V is is U ∩ V ,

3. The complement of U is Σ⋆ \ U .

Concatenation operation

Let U and W be languages on some alphabet set Σ. The
concatenation of U and W , denoted by U · W , is the
language U ·W = {u · w | u ∈ U,w ∈W}.

Example 8.1 Let U = {aba, bab} and W = {aab, bba}.
Then U ·W = {abaaab, ababba, babaab, babbba}.

Deterministic finite automata

Let U be a language over an alphabet Σ. Suppose we
are given a string v, and we would like to check whether
v belongs to U . A deterministic finite automaton (DFA)
is an algorithm that determines whether v belongs to U
or not.

We can represent a finite automata as a labeled directed
graph. We call this graph the transition diagram.

8.2. OPERATIONS ON LANGUAGES 145

Formal definition of a DFA

Definition 8.1 A deterministic finite automaton (DFA)
is a 5-tuple (S, q0, T, F,Σ), where

• S is the set of states.

• T is the transition function T : S × Σ→ S.

• F is a subset of S called the set of accepting states.

• Σ is an alphabet.

• q0 is the initial state. Note that q0 ∈ S.

Example 8.2 Let us look at the language U that consists
of all strings u such that u contains the substring baa.
We want to design an algorithm that, given a string v,
determines whether v ∈ U . Below is the Find-baa(v)-
algorithm that on input

v = σ1 . . .σn

determines if v contains baa as a sub-string (and if it
does, then v ∈ U).

Find-baa(v)-algorithm

The algorithm makes its transitions from one state to
another depending on the input symbol σ read. The
transition function is T : {0, 1, 2, 3}×{a, b}→ {0, 1, 2, 3}
given by the following Table.

a b
0 0 1
1 2 1
2 3 1
3 3 3

We can represent a finite automata as a labeled directed
graph. We call this graph transition diagram. Therefore
we have the following transition diagram for the Find-
baa(v)-algorithm.

As a program, the algorithm Find-baa is the following:

1. Initialize variables i = 1 and state = 0.

146 TOPIC 8. DETERMINISTIC FINITE AUTOMATA

2. If state = 0 and σi = a then set state = 0.

3. If state = 0 and σi = b then set state = 1.

4. If state = 1 and σi = a then set state = 2.

5. If state = 1 and σi = b then set state = 1.

6. If state = 2 and σi = a then set state = 3.

7. If state = 2 and σi = b then set state = 1.

8. If state = 3 and σi ∈ {a, b} then state = 3.

9. Increment i by one.

10. If i = n + 1 then go to Line 11. Otherwise go to
Line 2.

11. If state = 3 then output accept. Otherwise output
reject.

Example 8.3 What is the transition table for the follow-
ing transition diagram?

0 1 2

3 4 5

6

7
8

a

b a

b

a

b

a

b b
a

a
b

a

b

b

a

b

a

Runs and acceptance

Let M = (S, q0, T, F,Σ) be a DFA and u = σ1 . . .σn be
a string. The run of the automaton on u is the sequence
of states s1, s2, . . . , sn, sn+1 such that s1 is the initial
state and T (si,σi) = si+1 for all i = 1, . . . , n.

The run of M on a string u = σ1 . . .σn can be viewed of
as the execution the following algorithm Run(M, u):

1. Initialize s = q0, i = 1, and print s.

2. While i ≤ n do

(a) Set σ = σi.

(b) Set s = T (s,σ).

(c) Print s.

(d) Increment i

8.2. OPERATIONS ON LANGUAGES 147

Let M = (S, q0, T, F,Σ) be a DFA and u = σ1 . . .σn be a
string. We say thatM accepts u if the run s1, . . . , sn, sn+1

of M on u is such that the last state sn+1 ∈ F . Such a
run is called an accepting run.

DFA recognizable languages

Let M = (S, q0, T, F,Σ) be a DFA. The language ac-
cepted by M, denoted by L(M), is the language L(M) =
{w | the automaton M accepts w}.

A language L ⊆ Σ⋆ is DFA recognizable if there exists a
DFA M such that L = L(M).

Example 8.4 Consider a DFA with exactly one state.
If the state is an accepting state, then the automaton
accepts the language Σ⋆. If the state is not an accepting
state, then the automaton recognizes the empty language
∅.

Example 8.5 Consider the language L = {u} consisting
of one word u = σ1 . . .σn.

This language L is recognized by the following DFA (S, 0, T, F):

1. S = {0, 1, 2, 3, 4, . . . , n+ 1} with 0 being the initial
state.

2. For all i ≤ n− 1, T (i,σi+1) = i+1. In other cases
T (s,σ) = n+ 1.

3. The accepting state is n.

148 TOPIC 8. DETERMINISTIC FINITE AUTOMATA

Example 8.6 Describe languages accepted by the DFA
below:

8.3. DESIGNING FINITE AUTOMATA 149

8.3 Designing Finite Automata

Given a language L, we would like design a deterministic
finite automata that recognizes the language L. But can
we always do so? And if so, how?

For example, let us consider the language L = {abna |
n ∈ N}. Is there a DFA recognising L?

Example 8.7 Consider the language L = {u | u ∈
{a, b}⋆ such that u contains an odd number of a’s and
an even number of b’s }.
Our problem is to design a DFA recognizing this lan-
guage.

One way of doing so, is to count the number of a’s and
b’s in each given word. But we don’t really need to count
the number of a’s and b’s. We just need to keep track
of four cases: whether the number of a’s is odd or even,
and whether the number of b’s is odd or even. We can
do this with four states:

State 0: Even number of a’s and b’s.

Stete 1: Even number of a’s and odd number of b’s .

State 2: Odd number of a’s and b’s.

State 3: Odd number of a’s and even number of b’s.

We get the following transition diagram:

0 1 2

3 ba

ba

b

b a

a

150 TOPIC 8. DETERMINISTIC FINITE AUTOMATA

8.4 Automata for operations on languages

Union automata

Let M1 = (S1, q
(1)
0 , T1, F1) and M2 = (S2, q

(2)
0 , T2, F2),

and let two DFA recognizing L1 = L(M1) and L2 =
L(M2).

The Union Problem: Design a DFA M = (S, q0, T, F)
that recognizes L1 ∪ L2.

Construction of DFA M = (S, q0, T, F) for L1 ∪ L2

1. The set S of states is S1 × S2.

2. The initial state is the pair (q(1)0 , q(2)0).

3. The transition function T is the product of the
transition functions T1 and T2, that is:

T ((p, q),σ) = (T1(p,σ), T2(q,σ)),

where p ∈ S1, q ∈ S2, and σ ∈ Σ.

4. The set F of final states consists of all pairs (p, q)
such that either p ∈ F1 or q ∈ F2.

The notation for the new automaton is: M1 ⊕M2.

Why does the construction work?

If u ∈ L1 ∪ L2 then either M1 accepts u or M2 accepts
u. In either case, since M simulates both M1 and M2,
the string u must be accepted by M.

If u is accepted by M then the run of M on u is split
into two runs: one is the run of M1 on u and the other
is the run of M2 on u. Since M accepts u, it must be
the case that one of the runs is accepting.

Intersection automata

Let M1 = (S1, q
(1)
0 , T1, F1) and M2 = (S2, q

(2)
0 , T2, F2),

and let two DFA recognizing L1 = L(M1) and L2 =
L(M2).

The intersection problem: Design a DFAM = (S, q0, T, F)
that recognizes L1 ∩ L2.

Construction of DFA M = (S, q0, T, F) for L1 ∩ L2

1. The set S of states is S1 × S2.

2. The initial state is the pair (q(1)0 , q(2)0).

3. The transition function T is the product of the
transition functions T1 and T2, that is:

T ((p, q),σ) = (T1(p,σ), T2(q,σ)),

where p ∈ S1, q ∈ S2, and σ ∈ Σ.

4. The set F of final states consists of all pairs (p, q)
such that p ∈ F1 and q ∈ F2.

The notation for the automaton M is this: M1 ⊗M2.

8.4. AUTOMATA FOR OPERATIONS ON LANGUAGES 151

Complementation automata

The complementation problem:

Given a DFA M = (S, q0, T, F), design a DFA that rec-
ognizes the complement of L(M).

This is a simple procedure. Keep the original states,
the initial state, and the transition function T . Swap:
Declare non-accepting states as accepting, and accepting
states non-accepting.

152 TOPIC 8. DETERMINISTIC FINITE AUTOMATA

Codes

9.1 Prefix codes and optimal binary trees

Codewords

To represent symbols, computers use strings of 0’s and
1’s called codewords. For example, in the ASCII (Amer-
ican Standard Code for Information Interchange) code,
the letter A is represented by the codeword 01000001, B
by 01000010, and C by 01000011. In this system each
symbol is represented by some string of eight bits, where
a bit is either a 0 or a 1. To translate a long string of
0’s and 1’s into its ASCII symbols we use the following
procedure: Find the ASCII symbol represented by the
first 8 bits, the ASCII symbol represented by the second
8 bits, etc. For example, 010000110100000101000010 is
decoded as CAB.

For many purposes this kind of representation works well.
However, there are situations, as in large-volume stor-
age, where this is not an efficient method. In a fixed
length representation, such as ASCII, every symbol is
represented by a codeword of the same length. A more
efficient approach is to use codewords of variable lengths,
where the symbols used most often have shorter code-
words than the symbols used less frequently. For exam-
ple, in normal English usage the letters E, T, A, and O
are used much more frequently than the letters Q, J, X,
and Z.

Example 9.1 The most frequently used letters in English
are, in order: E, T, A, O, I, N, S, H, R, D, The
simplest way to assign the shortest codewords to the most
frequently used symbols is by the following table.

E T A O I N S H R D
0 1 00 01 10 11 000 001 010 011

In this way we have assigned the shortest possible code-
words to the most frequently used letters and longer
codewords to the other letters. This appears to be a
more efficient approach than assigning all these letters a
codeword of the same fixed length, which would have to
be three or more.

But how can we decode a string of 0’s and 1’s? For exam-
ple, how should the string 0110110 be decoded? Should
we start by looking at only the first digit, or the first two,
or the first three? Depending upon the number of digits
used, the first letter could be E, O, D or something else.
We see that in order to use variable length codewords we

153

154 TOPIC 9. CODES

need to select representations that permit unambiguous
decoding.

Prefix property and prefix codes

A way to do this is to construct codewords so that no
codeword is the first part of any other codeword. Such a
set of codewords is said to have the prefix property. This
property is not enjoyed by the above choice of codewords
since the codeword for T is also the first part of the code-
word for A. On the other hand, the set of codewords
S = {000, 001, 01, 10, 11} has the prefix property since
no codeword appears as the first part of another code-
word. The method to decode a string of 0’s and 1’s into
codewords having the prefix property is to read one digit
at a time until this string of digits becomes a codeword,
then repeat the process starting with the next digit, and
continue until the decoding is done.

Example 9.2 Using the set of codewords S above, decode
the string 001100100011.

An efficient method of representation should use code-
words such that :

1. the codewords have the prefix property; and

2. the symbols used frequently have shorter codewords
than those used less often.

Using a binary tree to construct prefix codes

A full binary tree can be used to construct a set of code-
words with the prefix property by assigning 0 to each
edge from a parent to its left child and 1 to each edge
from a parent to its right child. Following the unique di-
rected path from the root to a terminal vertex will give a
string of 0’s and 1’s. The set of all strings formed in this
way will be a set of codewords with the prefix property,
because corresponding to any codeword we can find the
unique directed path by working down from the root of
the binary tree, going left or right accordingly as each
digit is 0 or 1. By definition we finish at a terminal
vertex, and so this codeword cannot be the first part of
another codeword.

9.1. PREFIX CODES AND OPTIMAL BINARY TREES 155

Example 9.3 For the binary tree in the figure below,
assign 0’s and 1’s to its edges as implied above. What
codewords are produced?

By using a binary tree we have found a way to produce
codewords that have the prefix property. It remains to
find a method for assigning shorter codewords to the
more frequently used symbols.

Example 9.4 For the codewords produced in the previous
example, which should be used for the more frequently
used symbols?

Notice that these codewords correspond to the terminal
vertices that are closest to the root. Thus, to obtain
an efficient method for representing symbols by variable
length codewords, we can use a binary tree and assign
the most frequently used symbols to the terminal vertices
that are closest to the root.

Weighted trees

Suppose w1,w2,. . .,wk are nonnegative real numbers. A
binary tree for the weights w1,w2,. . .,wk is a binary tree
with k terminal vertices labeled w1, w2, . . . , wk. A bi-
nary tree for the weights w1, w2, . . . , wk has total weight
d1w1 + d2w2 + · · · + dkwk, where di is the length of
the directed path from the root to the vertex labeled
wi (i = 1, . . . , k).

156 TOPIC 9. CODES

Example 9.5 What are the total weights of the binary
trees shown below?

3 5

3 9 5 6 6

9

For the coding problem we want to find a binary tree of
smallest possible total weight in which the frequencies of
the symbols to be encoded are the weights. A binary tree
for the weights w1, w2, . . . , wk is called an optimal binary
tree for the weights w1, w2, . . . , wk when its total weight
is as small as possible.

The following algorithm due to David A. Huffman pro-
duces an optimal binary tree for the weights w1, w2, . . . , wk.
The idea is to create a binary tree by using the two small-
est weights, say w1 and w2, replace w1 and w2 by w1+w2

in the list of weights, and then repeat the process.

Huffman’s optimal binary tree algorithm

For nonnegative real numbers w1, w2, . . . , wk, this algo-
rithm constructs an optimal binary tree for the weights
w1, w2, . . . , wk.

Step 1 (select smallest weights). If there are two or
more weights in the list of weights, select the two
smallest weights, say V and W . (Ties can be bro-
ken arbitrarily.) Otherwise, we are done.

Step 2 (make binary tree). Construct a binary tree with
the root assigned the label V +W , its left child as-
signed the label V , and its right child assigned the
label W . Include in this construction any binary
trees that have the labels V or W assigned to a
root. Replace V and W in the list of weights by
V +W . Go to step 1.

9.2. INTRODUCTION TO ERROR-CORRECTING CODES 157

Example 9.6 Construct the optimal binary tree for the
weights 2, 3, 4, 7, 8. What is the total weight of this
tree?

In order to find codewords with the prefix property such
that the most frequently used symbols are assigned the
shortest codewords, we construct an optimal binary tree
with the stated frequencies of the symbols as its weights.
Then by assigning 0’s and 1’s to the edges of this tree
as described previously, codewords can be efficiently as-
signed to the various symbols.

Example 9.7 Suppose the characters E, T, A, Q, and Z
have expected usage rates of 32, 28, 20, 4, and 1, respec-
tively. Construct an efficient assignment of prefix codes
to these characters.

Example 9.8 Given a text, let wi be the number of oc-
currences of the i-th symbol. Suppose a binary tree for
those weights has total weight W =

∑
i diwi. If we en-

code our text using the corresponding prefix code, then
the resulting file has length W . (So it is shortest when
we minimize W .)

9.2 Introduction to error-correcting codes

When a radio message is sent through space, interference
with the transmission of a single letter or character may
result in the receipt of an incorrect communication.

If the message NEXT STOP JOME is received, it may
be clear that this was not the intended message. Perhaps
the actual message was NEXT STOP ROME or NEXT
STOP NOME, or something else.

It is often essential that a message be received as in-
tended. For this reason, such messages are rarely sent
in English (or French or German or any other common
language), since transmission error often results in a mis-
interpretation.

Alphabets and words

To ensure the accuracy of a message, it is useful to encode
it, that is, to use a new language in which it is less likely
that two words will be confused with each other.

Definition 9.1 For an integer b ≥ 2, the set

A = {0, 1, . . . , b− 1}
of b symbols is an alphabet. An ordered n-tuple of sym-
bols in A is called a word of length n or simply an n-word
(over A.)

158 TOPIC 9. CODES

The Hamming distance

Definition 9.2 For two n-words x and y, the distance
d(x, y), often called the Hamming distance, between x
and y is the number of coordinates at which x and y
differ.

Example 9.9 Let x = 0101101, y = 1011110 and z =
0111101. Then d(x, y) = 5, d(x, z) = 1, d(y, z) = 4.

Theorem 9.1 The Hamming distance has the following
properties.

1. d(u, v) ≥ 0, and d(u, v) = 0 if and only if u = v;

2. d(u, v) = d(v, u) for all u, v ∈ V (G);

3. d(u, v) ≤ d(u,w) + d(w, v) for all u, v, w ∈ V (G)
(The triangle inequality)

Proof: See lecture.

* Codes

Definition 9.3 Let n be a positive integer and A an al-
phabet of b elements. A fixed-length code C is a collec-
tion of words of length n over A. The fixed-length code C
is also called an (n, b)-code. If b = 2, then C is a binary
code.

Example 9.10 Give an example of a (6, 2)-code.

* Distance of a code

Definition 9.4 The distance d(C) of C is

d(C) = min{d(x, y)},

where the minimum is taken over all pairs x, y of distinct
code words.

9.2. INTRODUCTION TO ERROR-CORRECTING CODES 159

Example 9.11 What is the distance of the following
code?

C = {000000, 001101, 010011, 100101}.

The challenge in coding theory is to construct a code that

1. uses as simple an alphabet as possible to facilitate
transmission of messages,

2. uses a sufficiently large n so that many code words
are available and so that there is a great enough
distance between every two code words, and

3. uses a sufficiently small n to simplify transmission
of messages.

Example 9.12 Suppose a code word of the code in the
previous example is transmitted, but that one symbol gets
changed. If the received word is

110011

then what word was sent?

* t-error correcting codes

We now turn to the problem of constructing codes. Ide-
ally, a code should be constructed so that even if a small
number of errors do occur due to interference, the mes-
sage can still be understood.

Definition 9.5 A code is t-error correcting if, whenever
a code word x is transmitted, then x is the unique code
word closest to the word received, even when up to t er-
rors have occurred in the transmission of x.

Example 9.13 Let C = {00000, 11111}. Then C is a
2-error correcting code. (This is not an efficient code!)

We assume that if there is a unique code word at mini-
mum distance from the received word, then the received
word was intended to be the code word.

160 TOPIC 9. CODES

* What can we say about d(C)?

Example 9.14 Suppose that an (n, b)-code is 1-error
correcting. Is it possible for two code words to be at dis-
tance 1? Is it possible for two code words to be at distance
2?

Theorem 9.2 A code C is t-error correcting if and only
if d(C) ≥ 2t+ 1.

Proof: See lecture.

* Perfect codes

If an (n, b)-code C is t-error correcting, there is a limit
on how many code words C can contain.

Theorem 9.3 If C is a t-error correcting (n, b)-code,
then

|C| ≤
⌊
bn

s

⌋
,

where

s =

(
n

0

)
+

(
n

1

)
(b−1)+

(
n

2

)
(b−1)2+ · · ·+

(
n

t

)
(b−1)t.

Definition 9.6 A t-error correcting (n, b)-code C is per-
fect if |C| = bn/s, where s is given by the above the-
orem. (That is, for every n-word w over the alphabet
{0, 1, . . . , b − 1}, there is exactly one code word in C
within a distance of at most t from w.)

* A graphical representation of codes

Consider the graph G on {0, 1, . . . , b − 1}n where there
is an edge between vertices u = (u1, u2, . . . , un) and v =
(v1, v2, . . . , vn) if and only if ui ̸= vi for exactly one i
(1 ≤ i ≤ n). A code can be considered as a subset of G.

Example 9.15 How many vertices does G have? De-
scribe the graph when b = 2.

The Hamming distance between two code words is the
same as the length of the shortest path in G between the
two corresponding vertices. For a good code (i.e., one
with a large distance), the code words are placed at suit-
ably selected vertices of G so that the minimum distance
among all pairs of code words is as large as possible.

9.3. * GRAY CODES 161

9.3 * Gray codes

In this section we illustrate another application of codes.

Introductory example to Gray codes

The position of a rotating pointer can be represented in
digital form. One way to do this is to split the circle into
2n arcs of equal length and to assign a bit string of length
n to each arc. Two ways to do this using bit strings of
length three will be shown in the lecture.

The digital representation of the position of the pointer
can be determined using a set of n contacts. Each contact
is used to read one bit in the digital representation of the
position.

When the pointer is near the boundary of two arcs, a
mistake may be made in reading its position. This may
result in a major error in the bit string read. For in-
stance, in the coding scheme above, if a small error is
made in determining the position of the pointer, the bit
string 100 is read instead of 011. All three bits are in-
correct!

To minimize the effect of an error in determining the
position of the pointer, the assignment of the bit strings
to the 2n arcs should be made so that only one bit is
different in the bit strings represented by adjacent arcs.
A Gray code is precisely a way to do this.

Gray codes

Definition 9.7 As described above, we can intuitively
think of a Gray code as a labeling of arcs of a circle so
that adjacent arcs are labeled with bit strings that differ
in exactly one bit.

Formally, a n-bit Gray code is an ordered cyclic sequence
of the 2n n-bit strings (codewords) such that successive
codewords differ by a single bit.

We can find a Gray code by listing all bit strings of length
n in such a way that each string differs in exactly one
position from the preceding bit string, and the last string
differs from the first in exactly one position.

If you prefer thinking with graphs instead of binary strings,
we can solve this problem using the n-cube Qn. Specifi-
cally, a Hamiltonian circuit on Qn is a Gray code, if you
think of each vertex’s coordinates as the codewords and
the circuit as the order in which the codewords are to be
listed. These Hamiltonian circuits are not too hard to
find (try it yourself on Q3 and Q4!)

Binary-reflect Gray codes

There are many n-bit Gray codes, but we will be con-
cerned only with one special class that has some useful

162 TOPIC 9. CODES

properties. Suppose that:

G(n) =

⎛

⎜⎜⎜⎜⎜⎝

G0

G1

G2
...

G2n−1

⎞

⎟⎟⎟⎟⎟⎠

is an n-bit Gray code, written in the form of a 2n × n
binary matrix so that the ith row of the matrix is the ith
codeword.

Example 9.16 Use the above matrix of codewords to
derive an (n+1)-bit Gray code (in a recursive manner).

Wewill consider only so-called binary-reflected Gray codes
obtained when the above recursive definition is applied,
starting with the trivial 1-bit Gray code.

Example 9.17 What is the trivial 1-bit Gray code?

9.4 * RSA public-key cryptosystem

Consider the following problems:

1. PRIME: Is n a prime number?

2. COMPOSITE: Is n a composite number?

3. FACTORIZE: Find a, b < n, if possible, such that
n = ab. Otherwise report that none exist (and
that, for n ≥ 2, n is prime.)

We have listed problems in this form in order to pinpoint
the difference between COMPOSITE and FACTORIZE,
which at first sight look as if they might be the same.
Actually it is the first two, PRIME and COMPOSITE
that are identical in their complexity.

Although FACTORIZE may look the same as COMPOS-
ITE, it is in reality asking for a lot more, namely an ex-
plicit factorization. If we can find a and b less than n
such that n = ab, then we automatically know that n is
composite, but the point is that there are circumstances
under which we are able to assert that n is composite
without any factors being explicitly given.

Fermat’s little theorem

A standard result in elementary number theory, known as
’Fermat’s little theorem’, illustrates how this can happen.

9.4. * RSA PUBLIC-KEY CRYPTOSYSTEM 163

Theorem 9.4 If p is a prime number, then for any in-
teger a, ap ≡a mod p, and if p does not divide a then
ap−1 ≡1 mod p.

Example 9.18 Suppose that, for some n and a, we find
that an ̸≡ a mod n. It immediately follows from Fer-
mat’s little theorem that n cannot be prime, so (if n ≥ 2)
it must be composite. But the method of showing this
is rather indirect, and the computation that an−1 ̸≡ 1
mod n may not itself tell us anything about the factor-
ization of n.

Example 9.19 Show that if an−1 ≡ 1 (mod n) then
an ≡a (mod n). Find a counterexample to the converse
of this statement.

The theorem and example show that it is sometimes pos-
sible to discover that a number n is composite without
actually finding any of its factors. A more elaborate ver-
sion of these ideas leads to the Miller-Rabin primality
test which, assuming the Riemann hypothesis is true,
determines whether an integer is prime or composite in
polynomial time. A different method, which determines
primality in polynomial time without any assumptions,
is due to Agrawal, Kayal and Saxena.

Public-key cryptosystems

The apparent difficulty of factorizing large numbers, and
the comparative ease of producing large primes, has given
rise to one of the most popular ’public-key cryptosys-
tems’, called the RSA system after its inventors Ronald
Rivest, Adi Shamir and Leonard Adleman.

The idea of a public-key cryptosystem is that there is a
public key and a private key. Everyone can know the
public key, but the private key must be kept secret. Us-
ing the public key, anyone can encrypt a message to get
a ciphertext. Determining the message in a given cipher-
text should be extremely hard without the private key.
The important mathematical notion is that of a ’trap-
door’ or one-way function: namely a function which is
easy to compute, but whose inverse is hard to compute
without some additional information.

Most importantly, public key cryptography can be used
for digital signatures, which solve the authentication prob-
lem. For example, how do you know that your automatic
software updates are not a virus? The software update
comes with a digital signature (generated by the soft-
ware vendor) which can be verified using a public key
“hard-wired” into the operating system/application. En-
abling secure automatic updates would have been a real
headache without public key cryptography.

164 TOPIC 9. CODES

The private key

Suppose that p and q are chosen as two distinct ‘large’
prime numbers, and let n = pq. Once the encryption
procedure has been carried out (that is, input has been
stored in a coded, ’secret’ form), the special knowledge
needed for decryption (or recovering the input), called
a private key, is a number d between 1 and n which is
coprime with (p− 1)(q− 1), that is, d and (p− 1)(q− 1)
share no common factor,

The public key

As gcd(d, (p−1)(q−1)) = 1, by Euclid’s algorithm there
are integers e and b such that ed + b(p − 1)(q − 1) = 1.
We assume that 0 ≤ e < (p− 1)(q − 1). The public key,
the information required for encryption is then the pair
(e, n).

The encryption function

Now we describe how an integer M in the range 0 to
n−1 (public key cryptography is mainly used to transmit
symmetric session keys; so there is no loss of generality
in assuming the message is a moderate-sized integer) is
encrypted using the public key. We write the encrypted
version as f(M), so that f is the trapdoor function men-
tioned above. We let

f(M) = Me mod n

Suppose that we are also in possession of the private key,
d. This may then be used to ‘decrypt’ the original value
M from its encrypted version f(M) by using

M = (f(M))d mod n

To check the truth of this equation, since 0 ≤ M ≤ n− 1
it is enough to show that M ed ≡M mod n. Now p and
q are distinct primes and so this amounts to show that
M ed ≡M mod p and M ed ≡M mod q.

Example 9.20 Show that M ed ≡M mod p and M ed ≡
M mod q.

The signature function

Now we describe how to make digital signatures using
RSA. A document or file is passed through a “hash func-
tion” to obtain an integer M . A signature is generated
(by the user who knows the private key) as

S = Md mod n

9.4. * RSA PUBLIC-KEY CRYPTOSYSTEM 165

The receiver gets the document and S, as well as the
public key (n, e). They also use the hash function to
compute M and then verify the equation

M = Se mod n

Efficiency and Security

For the method to be useful, two properties are required:

1. (Efficiency) It must be possible to carry out the
arithmetic involved in selecting p, q and d, and in
calculating the encrypted and decrypted numbers
reasonably quickly (by computer), given the rele-
vant keys.

2. (Security) It must be prohibitively costly to de-
crypt the encrypted version of the message without
possession of the private key.

Selecting p, q and d

First, one selects p and q of the desired size using the
primality test mentioned above. Next, to select d, it is
sufficient to take a prime number larger than p and q
(and below pq) since all prime factors of (p − 1)(q − 1)
must be less than any number so chosen.

To perform the encryption and decryption, we have to
see how powers mod n can be rapidly computed.

Example 9.21 Compute 107 mod 3233 using just 9 mul-
tiplications.

In general, if e has k binary digits, l of them 1s, in its
binary expansion, then it will require k+ l−2 multiplica-
tions mod n to evaluate M e mod n which is O(log n).

Cost to decrypt without private key?

A justification of property 2 is more a matter of faith at
present, but certainly no easy method of decryption is
known which does not essentially involve factorization of
n.

Given that the system stands or falls on the difficulty
of factorizing large numbers, how large do p and q have
to be to make it reasonably secure? At present there
are algorithms known which will factorize numbers of
over 200 digits using massive distributed computation,
so allowing for possible improvements in this it seems
safe for the moment to employ primes p and q of at least
1000 bits (i.e., 300 digits; so that n will have about 600
digits).

166 TOPIC 9. CODES

Index

absolute complement, 104
abstraction (set), 101
accepting states, 145
adjacent vertices, 53
alphabet, 143
and (∧), 2
antisymmetric, 108
arrangements with repeti-

tions, 132
arrangements with re-

placement, 131
associative laws, 6, 104

bijection, 126
binary relation, 107
binomial coefficients, 134,

137
binomial theorem, 138
bipartite graph, 58
bound variable, 17

cardinality, 105
Cartesian product (A ×

B), 106
circuit in graph, 65
codewords, 153
coding theory, 157
codomain, 123
commutative laws, 6, 104
complement, 104

absolute, 104
relative (\), 103

complement (\), 103
complete bipartite graph,

59
complete graph, 57
component of graph, 67
composition of functions,

125
compound proposition, 1,

4
comprehension (set), 101
concatenation, 143, 144
conclusion, 3, 8
congruence, 29
congruence class, 30
connected graph, 66
connectives (¬, ∧, ∨, → ,

↔ , ⊕, nand,
nor), 2, 5

contingent proposition, 5
contradiction, 5
contrapositive, 10
counterexample, 13
counting lemma, 131
cycle graph, 57
cycle in graph, 65

De Morgan’s laws, 6, 104
decryption, 164
degree of vertex, 53
deterministic finite au-

tomaton, 145
DFA, 145
DFA recognizable, 147
digital signature, 164
directed graph, 51
disjoint sets, 131
distance of a code, 158
distributive laws, 6, 104
divisor, 21
domain, 123
double negation, 6

element, 101
empty set (∅), 101
encryption, 164
enumeration, 101
equivalence class, 110
equivalence relation, 109
error correcting codes, 159
Euclidean algorithm, 26
Euler circuit, 72
Euler path, 72
existential quantifier, 16
exists (∃), 16

factor, 21
for all (∀), 16
free variable, 17
function, 123

composition, 125
domain, 123
identity, 127
image, 124
injective, 126
inverse, 127
range, 124
surjective, 126

graph, 48
adjacency list, 60
adjacency matrix, 61
adjacent, 53
degree, 53
edge, 48
endpoints, 53
incident, 53
neighbour, 53
vertex, 48

greatest element, 118

Hamilton circuit, 83
Hamilton path, 83
Hamming distance, 158
handshaking theorem, 54

167

168 Index

Hasse diagram, 117
Huffman’s algorithm, 156
hypothesis, 3, 8

idempotent laws, 6, 104
identity function, 127
image (function), 123, 124
implication laws, 6
in-degree, 55
incidence matrix of graph,

63
incident edge, 53
inclusion/exclusion prin-

ciple, 138–140
inclusive or (∨), 3
initial state, 145
injective, 126
integers (Z), 21, 102
intersection (∩), 103
inverse function, 127

language, 144
language accepted, 147
lattice diagram, 117
laws

associative, 6, 104
commutative, 6, 104
De Morgan’s, 6, 104
distributive, 6, 104
for sets, 104–105
idempotent, 6, 104
implication, 6

least element, 118
lexicographic ordering,

114
logical connectives

(¬, ∧, ∨, → , ↔), 2
(⊕, nand, nor), 5

logical equivalence (⇔), 5
logical implication (⇒), 7
loop, 50
loop invariant, 39
lower bound, 120

maximal, 118
minimal, 118
modus ponens, 3
multigraph, 49

n-cube, 57
natural numbers (N), 21,

101
not (¬), 2

one-to-one, 126
onto, 126
or (∨), 2
ordered pair, 106
out-degree, 55

partial order, 111
partition, 111
Pascal’s identity, 138
path in graph, 65
permutation, 132

r-permutation, 132
pigeonhole principle, 140–

142

poset, 111
positive integers (P), 102
postorder algorithm, 93
power set, 103
predicate, 15
prefix, 143
prefix property, 154
preimage (f←(y)), 128
preorder algorithm, 93
prime, 21
private key, 164
product rule (enumera-

tion), 131
proof by contradiction, 11
proposition, 1

compound, 1, 4
contingent, 5
contradiction, 5
simple, 1
tautology, 5

pseudograph, 50
public key, 164

quantifier, 16
quotient, 26

r-permutation, 132
range (function), 124
rational numbers (Q), 21,

102
real numbers (R), 102
reflexive, 108
relative complement (\),

103
remainder, 26
replacement, 101

selections, 133, 136
selections with repeti-

tions, 135
set, 101

complement (\), 103
difference (\), 103
disjoint, 131
empty (∅), 101
equal, 102
intersection, 103
laws, 104–105
subset, 102
union, 103

set builder, 101
simple graph, 48
simple proposition, 1
state, 145
statement, 1
strongly connected, 69
subgraph, 81
subset, 102
substring, 143
surjective, 126
symmetric, 108

tautology, 5, 18
total order, 113
transition diagram, 144,

145
transition function, 145
transitive, 108

Index 169

truth table, 3–5
truth value, 2

union (∪), 103
union of graphs, 60
union rule (enumeration),

131
universal quantifier, 16

universal set, 104
upper bound, 120

variable, 21
Venn diagram, 104

well-ordered, 113
word, 143

