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Lecture 1

Basic mathematical background

We list here some important mathematical facts and techniques that will be used
often in this course. It is very important to understand them well - ask for help if
your background has substantial holes.

1.1 Sets

A set is an unordered collection of distinct objects (repeated elements are not
allowed), called elements of the set. We write a 2 X to mean that a is an element
of X. Some important sets are

• N = {0, 1, 2, . . . }, the set of natural numbers,

• R, the set of real numbers, and

• ú = {}, the empty set having no elements.

Notation: List elements, e.g. X = {2, 3, 5, 7, 11} or use set-builder notation X = {x 2
N : x is prime and x < 12}. Note that {a, a, b} = {a, b} because elements cannot be
repeated in a set.

Operations on sets A and B:

• A \ B = {x : x 2 A and x 2 B}, the intersection of A and B.

• A [ B = {x : x 2 A or x 2 B}, the union of A and B.

• |A| is the number of elements of A, the cardinality of A.

Example 1.1. What is the cardinality of A = {1, 1, 5}? Of B = {x2 : x 2
{�1, 1, 2}}?

What is A \ B? What is A [ B?



Lecture 1: Basic mathematical background 5

1.2 Functions

A function is a mapping f from a set X (the domain) to a set Y (the codomain)
such that every x 2 X maps to a unique y 2 Y . We write f : X ! Y . A function
f : X ! Y is one-to-one if whenever x , x 0, we have f (x) , f (x 0). It is onto if every
element of Y has the form f (x) for some x 2 X. A function that is both one-to-one
and onto has an inverse: f (x) = y if and only if g(y) = x.

Important functions from R to R:

• Power functions f (x) = x, f (x) = x2, f (x) = x3, etc.

• Exponential functions f (x) = 2x , f (x) = (1.5)x , etc.

• Logarithm (inverse of exponential) is defined by loga(y) = x if and only if
y = ax . Its domain is {x 2 R : x > 0}. We usually just write loga y, omitting
parentheses, if there is no confusion about what is meant.

Other useful functions:

• Ceiling rounds up to nearest integer, e.g. d3.7e = 4 = d4e.

• Floor rounds down, e.g. b3.7c = 3 = b3c.

1.3 Basic properties of important functions

• For fixed a > 1 the exponential f (x) = ax is strictly increasing and positive,
and satisfies

ax+y = axay

for all x, y 2 R.

• For fixed a > 1 the logarithm loga is strictly increasing and satisfies

loga(xy) = loga x + loga y

for all x, y > 0.

• We write ln = loge and lg = log2. Note that loga x = loga b logb x and ax =

ex ln a. If the base of the logarithm does not matter (for example when we do
asymptotic analysis) we often just write log.
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Example 1.2. Prove that for every n 2 N such that n � 1,

dlg(n + 1)e = 1 + blg nc.

1.4 Sums

A sequence is a function f : N! R.

Notation: f0, f1, f2, · · · where fi = f (i).
Sum notation: fm + fm+1 + · · · + fn =

Õn
i=m fi.

Some important sums:

n’
i=1

i =
n(n + 1)

2

n’
i=m

ai =
an+1 � am

a � 1 .

Example 1.3. Simplify
2n’
i=1

2i.

1.5 Proof by induction

Mathematical induction is a standard technique for proving a collection of re-
sults, one for each natural number. If we can prove for n = 0, and also show that
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whenever the result we want is true for n, it is true for n + 1, then we know it must
be true for all n 2 N.

Example 1.4. Prove that if a , 1 then for all n � 0

n’
i=0

ai =
an+1 � 1

a � 1 .

Proof. It is true for n = 0: 1 = 1. Assume it is true for a given n � 0. Then

n+1’
i=0

ai = an+1 +

n’
i=0

ai = an+1 +
an+1 � 1

a � 1

=
an+1(a � 1) + an+1 � 1

a � 1

=
an+2 � 1

a � 1 .

Thus the result holds for all n � 0, by mathematical induction.

Example 1.5. Consider the sequence defined by a0 = 1 and an = 3an�1 � 4 for
n > 0. Prove that an is odd for all n 2 N.

1.6 Binary trees

A binary tree is an object that is either empty or consists of a root node connected
to an ordered pair of binary trees.

We can also define them using explicit external nodes (null pointers) to represent
empty trees. Then a binary tree is an external node or an internal node connected
to an ordered pair of binary trees.

There is a unique path from the root to each node. The length of this path is the
depth of the node. The maximum depth of all nodes is the height of the tree.

Binary trees can be traversed in several ways, including preorder , postorder , in-
order . The latter recursively visits the left child, node, and right child.
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1.7 Limits

We only need to deal with functions that take nonnegative values in this course.
Write limx!1 f (x) = 1 if for all N > 0 there is some point past which f (x) > N
for all x, and write limx!1 f (x) = 0 if for all " > 0 there is some point past which
f (x) < " for all x.

If 0 < L < 1 we say limx!1 f (x) = L if for all " > 0 there is some point beyond
which L � " < f (x) < L + " for all x.

Example 1.6. limx!1 x2 = 1, limx!1 1/x = 0, limx!1
x�1
x+1 = 1.

An important use of limits is to compute the derivative of a function. This gives
the instantaneous rate of change, and is defined by

f 0(x) = lim
h!0

f (x + h) � f (x)
h

when this limit exists.

Example 1.7. If f (x) is respectively ex , ln x, xa for some constant a, then f 0(x)
is respectively ex , 1/x, axa�1.

There are some basic rules for derivatives, for example ( f + g)0 = f 0 + g0, ( f g)0 =
f g0 + f 0g.

An important technique is L’Hôpital’s rule:

lim
x!1

f (x)/g(x) = lim
x!1

f 0(x)/g0(x)

as long as the latter exists.

Example 1.8. limx!1
ex

x2
= limx!1

ex

2x = limx!1
ex

2 = 1.
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Example 1.9. What is limx!1
ln x
x ?

Another use of limits is to define the definite integral of a function, which gives
the area under the curve y = f (x). We compute them usually using the Funda-
mental Theorem of Calculus: if we can find F such that F 0 = f , then

π b

a
f (x) dx = F(b) � F(a).



Part I

Algorithm analysis
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What is an algorithm and why analyse it?

An algorithm is a sequence of clearly stated rules that specify a step-by-step
method for solving a given problem. The rules should be unambiguous and suf-
ficiently detailed that they can be carried out without creativity. Some examples
of algorithms are a (sufficiently detailed) cake recipe, the usual primary school
method for multiplication of decimal integers, quicksort.

Algorithms predate electronic computers by thousands of years – for example Eu-
clid’s greatest common divisor algorithm (seen in COMPSCI 225).

Algorithms and programs are different – a program is a sequence of computer
instructions implementing the algorithm. A program may implement more than
one algorithm.

Experience in computing over many decades shows that more performance gains
can be achieved by optimizing algorithms than by optimizing other factors such
as processors, languages, compilers, or human programmers.

Algorithms that have not been analysed for correctness often lead to major bugs
in programs. The analysis process often results in us discovering simpler algo-
rithms. Many algorithms have parameters that must be set before implementa-
tion, and analysis allows us to set the optimal values.

Example 2.1. The Fibonacci sequence is recursively defined by

F(n) =
⇢

n if n = 0 or n = 1;
F(n � 1) + F(n � 2) if n � 2.

This immediately suggests a recursive algorithm.

Algorithm 1 Slow method for computing Fibonacci numbers.
1: function SLOWFIB(integer n)
2: if n < 0 then return 0
3: else if n = 0 then return 0
4: else if n = 1 then return 1
5: else return SLOWFIB(n � 1) + SLOWFIB(n � 2)

The algorithm slowfib is obviously correct, but does a lot of repeated computa-
tion. With a small (fixed) amount of extra space, we can do better, by working
from the bottom up instead of from the top down.
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Algorithm 2 Fast method for computing Fibonacci numbers.
1: function FASTFIB(integer n)
2: if n < 0 then return 0
3: else if n = 0 then return 0
4: else if n = 1 then return 1
5: else
6: a 1 . stores F(i) at bottom of loop
7: b 0 . stores F(i � 1) at bottom of loop
8: for i  2 to n do
9: t a

10: a a + b
11: b t
12: return a

Proving correctness of fastfib is done by induction on n. We omit the proof here.

Example 2.2. It is easy to see that the number of additions, function calls, etc
needed by fastfib to compute F(n) has the form An + B for some constants
A, B. What about slowfib?
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How to measure running time?

There are three main characteristics of an algorithm designed to solve a given
problem.

Domain of definition: The set of legal inputs.

Correctness: The algorithm gives correct output for each legal input. This de-
pends on the problem we are trying to solve, and can be tricky to prove.

Resource use: This is usually the computing time and memory space.

• This depends on the input, and on the implementation (hardware, pro-
grammer skill, compiler, language, ...).

• It usually grows as the input size grows.

• There is a trade-off between resources (for example, time vs space).

• Running time is usually more important than space use.

In this course we mainly consider how to estimate resource use of an algorithm,
ignoring implementation as much as possible.

Given an algorithm algo, the actual running time on a given input inp depends
on many implementation details. This is not desirable because it does not allow
direct comparison of algorithms. The running time usually grows with the size of
the input. Running time for very small inputs is not usually important; it is large
inputs that cause problems if the algorithm is inefficient.

We use a clean mathematical model of the problem. For example, sorting distinct
records is really the same problem as computing the inverse of a permutation.

Definition 3.1. We define a notion of input size on the data. This is a positive
integer; for example, the number of records in a database to be sorted.

We use the concept of elementary operation as our basic measuring unit of run-
ning time. This is any operation whose execution time does not depend on the
size of the input. The running time T(inp) of algorithm algo on input inp is the
number of elementary operations used when inp is fed into algo.
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3.1 How running time scales with problem size

The table below describes the growth rate of some commonly used functions as
the problem size grows. Note that there are about 3 ⇥ 1018 nanoseconds in a cen-
tury.

Running time Input size
Function Notation 10 100 1000 107

Constant 1 1 1 1 1
Logarithmic lg n 1 2 3 7

Linear n 1 10 100 106

“Linearithmic” n lg n 1 20 300 7 ⇥ 106
Quadratic n2 1 100 10000 1012

Cubic n3 1 1000 106 1018

Exponential 2n 1 1027 10298 103010296

Example 3.2. A quadratic algorithm with running time T(n) = cn2 uses 500
elementary operations for processing 10 data items. How many will it use for
processing 1000 data items?

Example 3.3. Algorithm A takes n2 elementary operations to sort a file of n
lines, while Algorithm B takes 50n lg n. Which algorithm is better when n = 10?
When n = 106? How do we decide which algorithm to use?
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Example 3.4. Algorithms A and B use exactly TA(n) = cAn lg n and TB(n) =
cBn2 elementary operations, respectively, for a problem of size n. Find the
faster algorithm for processing n = 220 data items if A and B spend 10 and 1
operations, respectively, to process 210 ⌘ 1024 items.
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Techniques for estimating running time

Here are some easy basic rules.

• Running time of disjoint blocks adds.

• Running time of nested loops with non-interacting variables multiplies.

• For example, single, double, and triple loops with fixed number of elemen-
tary operations inside the inner loop yield linear, quadratic, and cubic run-
ning time.

Algorithm 3 Swapping two elements in an array.
Require: 0  i  j  n � 1

function SWAP(array a[0..n � 1], integer i, integer j)
t  a[i]
a[i] a[ j]
a[ j] t
return a

Algorithm 3 is a constant time algorithm.

Algorithm 4 Finding the maximum in an array.
function FINDMAX(array a[0..n � 1])

k  0 . location of maximum so far
for j  1 to n � 1 do

if a[k] < a[ j] then
k = j

return k

Algorithm 4 is a linear time algorithm, since it makes one pass through the array
and does a constant amount of work each time.
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What happens if the loop variable changes in a more complicated way?

Algorithm 5 Example: exponential change of variable in loop.

i 1
while i < n do

i  2i
print i

Example 4.1. What is the running time for Algorithm 5 and why?

Algorithm 6 Snippet: Nested loops.
for i  1 to n do

for j  i to n do
print i + j

Example 4.2. What is the running time for Algorithm 6 and why?
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What do we do if the control flow of the algorithm is more complicated? For ex-
ample, how do we handle if statements?

Algorithm 7 Snippet: If statements.
for i = 1; i < n; i  2i do

for j = 1; j < n; j  2 j do
if j = 2i then

for k = 0; k < n; k  k + 1 do
{ constant number of operations }

else
for k = 1; k < n; k  3k do

{ constant number of operations }

Example 4.3. What is the running time for Algorithm 7 and why?

Algorithm 8 Snippet: Nested loops 2.
m 2
for j  1 to n do

if j = m then
m 2m
for i  1 to n do
. . . . constant number of elementary operations

Example 4.4. Let us roughly estimate the running time of Algorithm 8.
The inner loop is executed k times for j = 2, 4, . . . , 2k where k  lg n < k + 1.
The total time for the elementary operations is proportional to kn, that is,
T(n) = nblg nc ⇡ n lg n.
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Algorithm 9 Snippet: Nested loops 3.
m 1
for j  1 step j  j + 1 to n do

if j = m then
m m (n � 1)
for i  0 step i  i + 1 to n � 1 do
. . . . constant number of elementary operations

Example 4.5. Is the running time of Algorithm 9 quadratic or linear?
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Asymptotic notation

5.1 Asymptotic comparison of functions

In order to compare running times of algorithms we want a way of comparing
the growth rates of functions. We want to see what happens for large values of
n – small ones are not relevant, because almost any algorithm is good enough in
practice for very small input. We are not usually interested in constant factors and
only want to consider the dominant terms in the running time.

The standard mathematical approach to this is to use asymptotic notation O, ⌦,
⇥which we will now describe.

5.2 Big-O notation

Definition 5.1. Suppose that f and g are functions from N to R, which take on
non-negative values.

• Say f is O(g) (“ f is Big-Oh of g”) if there is some C > 0 and some n0 2 N such
that for all n � n0, f (n)  Cg(n).
Informally, f /g is eventually bounded away from infinity, and f grows at
most as fast as g.

• Say f is ⌦(g) (“ f is big-Omega of g”) if g is O( f ).
Informally, f /g is eventually bounded away from zero, and f grows at least
as fast as g.

• Say f is ⇥(g) (“ f is big-Theta of g”) if f is O(g) and g is O( f ).
Informally, f /g is bounded away from zero and infinity, and f grows at the
same rate as g.

Note that O(g) is really a class of functions and strictly speaking we should write
f 2 O(g), but we use the less formal terminology to reduce the overload of sym-
bols.

5.3 Examples

Example 5.2. Every linear function f (n) = an + b, a > 0, is O(n).
Proof. an + b  an + |b|  (a + |b|)n for n � 1.



Lecture 5: Asymptotic notation 21

Example 5.3. If f (n) = n, g(n) = n2/2, then f is O(g) and g is not O( f ), so g
grows asymptotically faster than f .
Proof. First note that f (n)  2g(n) for n � 0 (because n  n2). Conversely,
suppose that eventually n2  Cn. Then n  C for all sufficiently large n, a
contradiction.

Example 5.4. Show that n lg n is O(2�10n2).

Note that we could always reduce n0 at the expense of a bigger C but it is often
easier not to. For example, in Example 5.3, we could have used n0 = 2 and C = 1,
because n  n2/2 for all n � 2.

We usually do not prove such results from the definition but you need to know
how to, in case the following rules do not apply.

5.4 Rules for asymptotic notation

Irrelevance of constant factors: If c > 0 is constant then c f is ⇥( f ).

Transitivity: If f is O(g)/⌦(g)/⇥(g) and g is in O(h)/⌦(h)/⇥(h), then f
is O(h)/⌦(h)/⇥(h).

Sum rule: If f1 is O(g1) and f2 is O(g2) then f1 + f2 is in O(max{g1, g2}).

Product rule: If f1 is O(g1) and f2 is O(g2) then f1 f2 is O(g1g2).

Limit rule: Suppose that L := limn!1 f (n)/g(n) exists. Then

• if L = 0 then f is O(g) and f is not ⌦(g);
• if 0 < L < 1 then f is ⇥(g);
• if L = 1 then f is ⌦(g) and f is not O(g).

L’Hôpital’s rule is often useful for the application of the limit rule. Note that the
limit may not exist at all.
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5.5 More examples

Example 5.5. loga(n) is ⇥(lg n) for each a > 1.

Example 5.6. n lg n is O(n2) and n lg n is not ⌦(n2), by the limit rule.

Example 5.7. 2n is ⌦(n100), by the limit rule.

Example 5.8. Is 10�100n2 + 10100n in O(n)?

Example 5.9. 1 + (�1)n is O(1) but not ⇥(1) since it takes on the value 0 in-
finitely often. The limit rule does not apply either.
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5.6 Asymptotics via integral approximation

Example 5.10. We want the asymptotic behaviour of log(n!) = Õn
k=1 log k.

Clearly there is an upper bound log n!  n log n, because each term in the sum
is at most log n. How can we get a lower bound? We use approximation by an
integral.

Example 5.11. By integral approximation we obtain Hn is⇥(log n)where Hn :=
1 + 1/2 + 1/3 + · · · + 1/n is the nth harmonic number.

5.7 Summary of results

Write f � g if f is O(g) but f is not ⇥(g), so g grows at a faster rate than f .

Example 5.12. log n � (log n)2 � pn � n � n log n � n(log n)2 � n2 � n3 � · · · �
(1.5)n � 2n � n! � nn.
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Q&A

Here we consider some more subtle questions that have been ignored so far.

6.1 Is addition of integers an elementary operation?

If the integers (and their sum) can fit into a machine word (typically 64 bits, so
not bigger than 9 223 372 036 854 775 807) then adding two of them can be done in
constant time. If the integers are much longer, as occurs for example in symbolic
algebra systems, cryptography, etc, then to avoid overflow they must be repre-
sented another way (“big integers”). Typically these are strings. In this case the
addition is done componentwise and the running time grows linearly with the
size of the integers.

Example 6.1. Assuming that F(n) has the order of n decimal digits (which is
true), the amount of work done by fastfib is of order 1 + 2 + · · · + n which is
order n2, not n. So fastfib is technically a quadratic time algorithm!

6.2 Have we been measuring input size correctly?

We used n to measure the size of the integer n. This seems wrong. In fact the
number of bits needed to represent n seems a much better idea. If m is the size of
the positive integer n, then m = 1 + blg nc, and 2m�1  n < 2m. This turns fastfib
from a polynomial time algorithm to an exponential time algorithm! The input
size measure must be specified in algorithm analysis.

6.3 What happens if there are many inputs of a given size?

We usually do not want to have to consider the distribution of running time over
all possible inputs of a given size. There may be (infinitely) many inputs of a given
size, and running time may vary widely on these. For example, for sorting the
integers 1, . . . , n, there are n! possible inputs, and this is large even for n = 10.

We consider statistics of T(inp) such as worst-case or average-case running time
for instances inp of size n.

6.4 What are the pros and cons of worst and average case analysis?

• Worst-case bounds are valid for all instances: this is important for mission-
critical applications.

• Worst-case bounds are often easier to derive mathematically.
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• Worst-case bounds often hugely exceed typical running time and have little
predictive or comparative value.

• Average-case running time is often more realistic. Quicksort is a classic ex-
ample.

• Average-case analysis requires a good understanding of the probability dis-
tribution of the inputs.

Conclusion: a good worst-case bound is always useful, but it is just a first step
and we should aim to refine the analysis for important algorithms. Average-case
analysis is often more practically useful, provided the algorithm will be run on
“random” data and we have some tolerance for risk.

6.5 Why can constants often be ignored?

A linear time algorithm when implemented will take at most An + B seconds to
run on an instance of size n, for some specific constants A, B that depend on the
implementation. For large n, this is well approximated by An. Small n are not
usually of interest anyway, since almost any algorithm is good enough for tiny
instances.

No matter what A is, we can easily work out how the running time scales with in-
creasing problem size (linearly!). The difference between a linear and a quadratic
time algorithm is usually huge, no matter what the constants are. For large enough
n, a linear time algorithm will always beat a quadratic time one.

Conclusion: in practice we often need to make only crude distinctions. We only
need to know whether the running time scales like n, n2, n3, n log n, 2n, . . . . If we
need finer distinctions, we can do more analysis.

6.6 Can we always ignore constants?

When we want to choose between two good algorithms for the same problem (“is
my linear-time algorithm faster than your linear-time algorithm?”), we may need
to know constants. These must be determined empirically.

For important algorithms that will be used many times, it is worth being more
precise about the constants. Even small savings will be worth the trouble.

An algorithm with running time 10�10n2 is probably better in practice than one
with running time 1010n, since the latter will eventually beat the former, but only
on instances of size at least 1020, which is rarely met in practice.

Conclusion: we should have at least a rough feel for the constants of competing
algorithms. However, in practice the constants are usually of moderate size.
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6.7 Summary

• Our goal is to find an asymptotic approximation for the (worst or average
case) running time of a given algorithm. Ideally we can find a simple func-
tion f and prove that the running time is ⇥( f (n)).

• The main f (n) occurring in applications are log n, n, n log n, n2, n3, 2n, and each
grows considerably faster than the previous one. The gap between n and
n log n is the smallest.



Part II

Analysis of sorting
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The problem of sorting, selection sort

Sorting (especially integers or words) is ubiquitous in computing. Sorting also
makes many other problems easier, e.g., selection and finding duplicates. The
problem of sorting is as follows.

Definition 7.1. Given n keys a1, . . . , an from a totally ordered set, put them in in-
creasing order. The keys may be just part of a larger data record.

Example 7.2. Sort the integers {42, 7, 911,�2} with  and the words {banana,
computer, Auckland, bamboo} with alphabetical (lexicographic) order.

7.1 Properties of sorting algorithms

Definition 7.3. A sorting algorithm is comparison-based if it only uses the order
relation to compare keys.

This is consistent with the ADT (Abstract Data Type), object-oriented approach.
There are other algorithms like bucket sort, radix sort, etc. that do not do this.
They use properties of the data representation such as the decimal expansion of
keys. We only analyse comparison-based algorithms, since they work for general
data. Note that the data structure used for sorting is important. Sorting an array
is a different problem from sorting a linked list. However, these differences affect
only efficiency, not correctness, and for correctness we can (and should) consider
the algorithm as acting on a general list.

We consider only two elementary operations: a comparison of two items and
a move of an item. For a comparison, we choose keys x and y and answer the
question “is x < y?” (or maybe we ask which of x < y, x = y, y < x is true). There
are two main types of move-related operations.

• We can swap the position of elements (at positions i and j say). Each swap
requires 3 updates of variables.

• Another way is to insert the element in the list at position i after position j
and remove it from its current position.



Lecture 7: The problem of sorting, selection sort 29

If the list is implemented using an array, then insertion-deletion is expensive (⇥(n�
j) data moves in worst case), since elements must be moved along, and hence this
is not an elementary operation. Then swaps are better.

If the list is implemented as a linked list, then insertion is cheap (⇥(1) data moves
in worst case). So we usually do that instead of swapping.

Definition 7.4. A sorting algorithm is in-place if it only uses fixed additional space,
independent of n. It is stable if records with equal keys have their order un-
changed by the algorithm.

7.2 Selection sort

The sorting algorithm selection sort works as follows.

• Find the maximum element of the unsorted part of the list by sequential
scan, and move it to the end of the sorted part. Iterate.

This is perhaps the most obvious sorting algorithm. It makes the smallest possible
number of swaps of any comparison-based sorting algorithm, so may be useful if
data moves are VERY expensive. Is it clearly inefficient, since useful comparison
information gathered in each pass is forgotten.

Algorithm 10 Selection sort.
1: function SELSORT(list a[0..n � 1])
2: for i  n � 1 to 0 do
3: k  findmax(a[0..i])
4: if k , i then
5: swap(a, i, k)
6: return a
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Example 7.5. Complete the following selection sort process.

7 4 8 1 5 3 6
unsorted sorted

2

87 4 1 5 32 6

We now analyse the properties of selection sort.

7.3 What is the running time?

Finding the maximum of a[i..n � 1] by sequential search takes (n � 1) � i compar-
isons, so the total number of key comparisons is

Õn�1
i=0 i = n(n�1)

2 . The number of
index comparisons is n and the number of swaps is at most n � 1. Hence, the run-
ning time is in ⇥(n2) if we take comparisons and swaps as elementary operations.

7.4 Which inputs give the best and worst case?

The algorithm is very insensitive to the input. Its best and worst case running
time are very similar. The best case is when the list is already sorted; the worst is
when every swap is needed, and this occurs when the input permutation has no
fixed point. However the number of comparisons, which usually dominates the
running time, is the same for every input.

7.5 Is selection sort in-place?

Yes, selection sort is an in-place sorting algorithm. Convince yourself why.

7.6 Is selection sort stable?

No, selection sort is not a stable sorting algorithm.
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Example 7.6. Execute selection sort on the following input to convince your-
self that the algorithm is not stable.

3 1a
sorted

1b2

7.7 What happens if we run selection sort on a linked list?

Running time on a linked list is not much different from performance on an ar-
ray. The differences involve swap versus insertion, but comparisons dominate the
running time anyway.

Lastly, note that there is no better way to find the maximum using a list than what
we have done above. But if we change the data structure . . . (see Lecture 13 on
heapsort).
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Insertion sort

The sorting algorithm insertion sort works as follows.

• For each element x in the unsorted part of the input list, scan backward
while the preceding element exceeds it. Move x to its correct position. It-
erate.

This is the sorting method used by card players to arrange cards in a hand. It
works well on small lists, or lists that are nearly sorted.

Algorithm 11 Insertion sort.
1: function INSORT(list a[0..n � 1])
2: for i  1 to n � 1 do
3: k  a[i] . save value so we do not overwrite
4: j  i � 1
5: while a[ j] > k and j � 0 do
6: . scan backward to find correct insertion position
7: a[ j + 1] a[ j]
8: j  j � 1
9: a[ j + 1] k . insert a[i] in correct position

10: return a

Algorithm 12 Insertion sort swap version.
1: function INSORT2(list a[0..n � 1])
2: for i  1 to n � 1 do
3: j  i � 1
4: while a[ j] > a[ j + 1] and j � 0 do
5: . swap backward to move to right place
6: swap(a, j, j + 1)
7: j  j � 1
8: return a
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Example 8.1. Complete the following insertion sort process.

sorted

7 4 8 1 5 3 62
unsorted

2 7 4 8 1 5 3 6

7 2 8 1 5 3 64

8.1 Insertion sort analysis

The number of key comparisons for fixed i is one more than the number of j such
that j < i and a[i] < a[ j]. Thus the total number of comparisons is n � 1 plus the
number of inversions, namely pairs (i, j) of indices with j < i and a[ j] > a[i] (“out
of order” pairs of elements). The number of swaps in the second version is the
number of inversions. The number of element assignments in the first version is
n � 1 plus the number of inversions. In the best case insertion sort runs in linear
time. In the worst case the number of inversions is n(n � 1)/2 (where input is in
reverse sorted order) so it runs in quadratic time ⇥(n2).

Example 8.2. How many inversions are in the permutation 72481536?
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8.2 What is the average-case performance of insertion sort on random
data?

Example 8.3. What is the average number of inversions in a random permu-
tation of {1, . . . , n}?

8.3 Which inputs give the best and worst case?

Unlike selection sort, insertion sort has running time that is very sensitive to the
input. As mentioned above, the best case occurs when the input is already sorted,
and the worst when the input is in reverse sorted order.

8.4 Is insertion sort in-place?

Yes, insertion sort is an in-place sorting algorithm. Convince yourself why.

8.5 Is insertion sort stable?

Yes.

Example 8.4. Execute insertion sort on the following input to convince your-
self that the algorithm is stable.

3 1a 1b2
sorted unsorted

3 1b1a 2
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8.6 Analysis when implemented on a linked list

We can reduce the number of data moves if we use a linked list to implement the
list ADT. However, searching to find the right insertion point still takes time in
⇥(n2) in the worst case.

8.7 How can we improve insertion sort?

On an array, we can reduce the number of comparisons by using binary search
(see future lecture) to find the insertion point. However, the swaps still take time
in ⇥(n2) as above, so this is of little use.

We can improve by changing the algorithm somewhat. We can move elements
to the left using big steps, gradually reducing the step size to 1. This is called
Shellsort (D. Shell, 1959).

• Fix h = n/2. Run insertion sort on the sublists formed by taking every hth
element. Iterate, reducing h to 1 systematically.

The key property is that each run removes inversions and none are restored by
later runs. The last run is just insertion sort, but on a file that is almost sorted.

Example 8.5. An example of Shellsort with h = 5, 3, 1.

6 18 2 459

6 5 7

7

2 4

5 6

8

8

1

1
7

2 4
3

10

5 21 37 6 4

2
1

4 6 7

2 1 4

3

5

5

6

6

7

7 8

9

9 1041 2

10

h = 5

h = 3

h = 1

9

9 3

3

10

10

10

10

8 9

93
5 8

83

This is a simple algorithm whose analysis is very hard. Values of h chosen from
all relevant numbers of the form 2i3j have been proved to give O(n(log n)2) run-
ning time, but better ones are used in practice. Almost nothing is known about
average-case running time of Shellsort. Empirically, behaviour that looks like
O(n7/6) has been obtained.

Shellsort is easy to program and useful in practice for fairly large arrays (say 105)
especially for partially sorted data. It is substantially better than insertion sort.
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Mergesort

Here we discuss two “industrial strength” sorting algorithms, Mergesort and Quick-
sort , and look at the first one in more detail.

• Each algorithm splits the input list into two sublists, recursively sorts each
sublist, and then combines the sorted sublists to sort the original list.

• Mergesort (J. von Neumann, 1945): splitting is very easy, most of the work
is in combining. We divide the list into left and right half, and merge the
recursively sorted lists with a procedure merge.

• Quicksort (C. A. R. Hoare, 1962): most of the work is in the splitting, combin-
ing is very easy. We choose a pivot element, and use a procedure partition

to alter the list so that the pivot is in its correct position relative to the left
and right sublists on each side. Then the left and right sublists are sorted
recursively.

Each is used as the basis for built-in sorting algorithms in common programming
languages.

Algorithm 13 Mergesort.
function MERGESORT(list a[0..n � 1])

if n > 1 then
m b(n � 1)/2c .median index of list
l  MERGESORT(a[0..m]) . sort left half
r  MERGESORT(a[m + 1..n � 1]) . sort right half
a MERGE(l, r) .merge both halves

return a

9.1 Linear time merging for Mergesort

The key is an efficient merge algorithm. If L1 and L2 are sorted lists, they can be
merged into one sorted list in linear time.

• Start pointers at the beginning of each list.

• Compare the elements being pointed to and choose the lesser one to start
the sorted list. Increment that pointer.

• Iterate until one pointer reaches the end of its list, then copy remainder of
other list to the end of the sorted list.
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If the list is implemented as an array, this merging takes linear extra space (cannot
be done in place). But if linked lists are used, it can be done in place. In any case
the number of comparisons is in ⇥(n).

Example 9.1. Execute mergesort on the following input.

7 4 8 1 5 3 62

7 4 82

7 2 4 8

7 2

2 7

9.2 Mergesort analysis

The number of comparisons Cn satisfies (approximately)

Cn =

⇢
Cdn/2e + Cbn/2c + n if n > 1;
0 if n = 1.

Thus if n is a power of 2 we have Cn = 2Cn/2 + n. We need to develop tools to solve
recurrences like this — see the next lecture.

9.3 Which inputs give the best and worst case?

Mergesort is not very sensitive to the input order. If the input is already sorted, the
merge operation does the fewest possible comparisons. The worst case occurs
when the input looks like 5,1,7,3,6,2,8,4 (every possible comparison is made at
every level of the merge). However the input only affects lower order terms – it
turns out (next lecture) that mergesort does about n lg n comparisons on every
input.
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9.4 Is mergesort in-place?

Example 9.2. Show by example that it is not, when implemented on an array.

9.5 Is mergesort stable?

Example 9.3. Execute mergesort on the following input to convince yourself
that the algorithm is stable.

3 1a 1b2

9.6 Analysis when implemented on a linked list

Since finding the middle element of the list is time-consuming, in this case it
makes more sense to “unroll” the recursion and process all the instances at the
bottom of the recursion tree (merging two size 1 lists) first, then merge all the
resulting size 2 lists two-by-two, etc. This “bottom-up mergesort” is not only
equivalent to mergesort, it is in place! Note that “bottom-up mergesort” is strictly
speaking a different algorithm from mergesort.
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Recurrences

Definition 10.1. A recurrence relation or difference equation is an equation that
defines an unknown function F recursively. The value F(n) is determined by the
values F(0), F(1), . . . , F(n � 1) for sufficiently large n. The smaller values of n are
called the initial conditions.

10.1 Important special cases

Tower of Hanoi: T(n) = 2T(n � 1) + 1, T(1) = 0.

Searching a linked list: T(n) = T(n � 1) + 1, T(0) = 0.

Insertion sort: T(n) = T(n � 1) + n, T(0) = 0.

Binary search: T(n) = T(n/2) + 1, T(1) = 0 makes sense when n is a power of 2.

Mergesort: T(n) = 2T(n/2) + n, T(1) = 0 makes sense when n is a power of 2.

Quicksort: T(n) = (2/n)Õi<n T(i) + n � 1, T(1) = 0.

Important examples in this course are constant coefficient linear recurrences which
have the form F(n) = ÕK

k=1 akF(n � k) for some fixed K and some constants ak . Ex-
amples are the Fibonacci numbers, F(n) = F(n � 1) + F(n � 2) and the power of 2,
F(n) = 2F(n � 1).
We deal with only two easy techniques here: “bottom-up” and “top-down” guess-
ing. In each case we guess a pattern and (should) prove it by mathematical induc-
tion. Sometimes a simple change of variable can convert a more difficult-looking
recurrence into an easy one.

10.2 Top-down solution method example

Example 10.2. We are given T(n) = 2T(n � 1) + 1,T(1) = 0. We can iterate this
to obtain

T(n) = 2T(n � 1) + 1
= 2[2T(n � 2) + 1] + 1 = 22T(n � 2) + (2 + 1)
= 22[2T(n � 3) + 1] + (2 + 1) = 23T(n � 3) + (22 + 2 + 1)
= · · · = 2n�1T(1) + (2n�2 + · · · + 2 + 1) if n � 1

=
’

0i<n�1
2i = 2n�1 � 1.
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10.3 Bottom-up solution method example

Example 10.3. We are given T(n) = 2T(n � 1) + 1, T(1) = 0. We compute values
from the bottom up using the recurrence.

We have T(1) = 0, T(2) = 2T(1) + 1 = 1, T(3) = 2T(2) + 1 = 3, T(4) = 7, T(5) = 15.
We guess T(n) = 2n�1 � 1. The guess is correct when n = 1. Now assume that
n > 1 and the formula holds for all smaller values than n. From the recurrence
we then have T(n) = 2T(n� 1)+ 1 = 2(2n�2 � 1)+ 1 = 2n�1 � 1. Thus the formula
holds for all n � 1, by mathematical induction.

10.4 Change of variable

Example 10.4. Consider the divide-and-conquer recurrence T(n) = T(n/2)+1,
T(1) = 0. This makes sense for n a power of 2.

Changing variable by n = 2i, T(n) = U(i) gives U(i) = U(i � 1) + 1, U(0) = 0. By
top-down or bottom-up guessing as above, we get

T(n) = U(i) = i = lg n

when n is a power of 2.
Similarly the mergesort recurrence T(n) = 2T(n/2) + n,T(1) = 0 has solution
T(n) = n lg n for n a power of 2.

Example 10.5. How does the solution to Example 10.4 look if we do not do
the change of variable?
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10.5 Mathematical extra: dealing with floors and ceilings, etc

The mergesort recurrence involves floor and ceiling functions. How do we deal
with these?

We can solve the mergesort recurrence T(n) = T(dn/2e)+T(bn/2c)+n asymptotically.
“Exact” solutions are hard. See COMPSCI 720 and beyond. Then we consider the
recurrence T̂(n) = 2T̂(d(n/2)e) + n. It is easily shown that T  T̂ , and as above
T̂(n) = n lg n for n a power of 2. We can then show that T(n) is O(n lg n). A similar
argument gives T(n) is ⌦(n lg n).
In real life we usually do not have exactly an additive term n but just some f (n)
where f (n) is ⇥(n). Similar techniques show that we get the same answer, asymp-
totically.

10.6 How do we solve the Fibonacci recurrence?

Recall F(0) = 0, F(1) = 1, F(n) = F(n�1)+F(n�2), (n � 2). Such linear homogeneous
recurrences can be solved exactly with more theory than we have time for in this
course.

Example 10.6. Try to solve the Fibonacci recurrence using the top-down or
bottom-up method. Why does it fail?

To find an asymptotic solution for F(n) (which is all we need here), we conjecture,
based on examples, that F(n) grows exponentially in n. In other words, there are
C > 0 and r > 1 such that F(n) � Crn for all sufficiently large n.

Try to prove this by induction. The obvious method gives F(n+1) = F(n)+F(n�1) �
C(rn + rn�1) = Crn(1 + r), so that we easily obtain the conclusion we want if and
only if 1 + r � r2, or r  � := (1 +

p
5)/2 ⇡ 1.618.

Now suppose F(n)  Drn for all sufficiently large n. Trying to prove this by induc-
tion, we require 1 + r  r2 or r � �.

Thus F(n) is ⇥(�n).
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Quicksort

Quicksort was described briefly in Lecture 9. We give the details now. Note that
a purely recursive version would do a lot of copying to create new versions of the
left and right sublists, as happens with mergesort. In terms of programming lan-
guages, we are talking about “passing by value”. We can get an in-place imple-
mentation if we use functions that can modify the value of their argument with-
out explicitly returning them (they have “side effects”, usually implemented in
programming languages via “passing by mutable reference”, which is commonly
done for arrays by default).

Algorithm 14 Quicksort - basic.
Require: 0  i  j  n � 1 . Side effect: changes a

function QUICKSORT(list a[0..n � 1], integer i, integer j)
if i < j then

q PARTITION(a, i, j) . put pivot in correct position
QUICKSORT(a, i, q � 1) . sort left half
QUICKSORT(a, q + 1, j) . sort right half

The exact way in which quicksort works depends on the details of the way we
choose the pivot element and how the partition algorithm works. Each choice for
these gives a different quicksort algorithm. We use the first entry as pivot element
for a basic presentation, but there are better options in practice.

Example 11.1. Illustration of quicksort. First the array is partitioned and the
pivot element 4 moved into the middle. Then the left side (“< 4”) and right
side (“> 4”) are recursively sorted.

4 5 12
< = >

64 52

1 2

63

1
< =

3
>

4
=

5
>

6

3

11.1 Linear time partitioning

Given a list L and an element p of L called the pivot, we can partition so that
all elements to the left of L are  p and all to the right are � p. One method is
Algorithm 15 (Hoare, 1960) and it works as follows.
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• Start with pointers at opposite ends of the list. Stop when pointers cross.

• At each step, increment the left pointer until we reach an element � p, and
decrement the right one until we reach an element  p.

• Swap these elements and continue. When pointers cross, swap right pointer
with pivot.

Algorithm 15 Partition - Hoare’s method.
Require: 0  i  j  n � 1 . Side effect: changes a

function PARTITION(list a[0..n � 1], integer i, integer j)
p a[i] . pivot element
l  i . left pointer
r  j + 1 . right pointer
while True do

repeat
l  l + 1 . find big element

until a[l] � p
repeat

r  r � 1 . find small element
until a[r]  p
if l < r then

swap(a, l, r) . swap big and small elements
else

swap(a, i, r) . put pivot in correct place
return r
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Example 11.2. Complete the following example for the partition algorithm
Algorithm 15. Begin with setting the pointers p, l and r after finding the big
and small element in the second iteration.

4 1 5 6 2
p, l

37
r

4 1 5 6 2
p

37
r find big/small elementl

4 1 6 2
p

3 7
rl swap

5

4 1 6 23 7 5

find big/small element

swap

find big/small element

swap pivot

Example 11.3. Does the quicksort algorithm in Example 11.1 use Hoare’s
method, Algorithm 15, for partitioning?

Example 11.4. Execute the quicksort algorithm Algorithm 14 using Hoare’s
partition algorithm.

7 4 8 1 5 3 62

7
= ><
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11.2 Quicksort analysis

The number of comparisons satisfies a recurrence like Cn = Cp�1 + Cn�p + n. If we
are unlucky (like when the list is already sorted), this degenerates to Cn = Cn�1 + n
and we get quadratic running time.

However, quicksort seems to behave well in practice. We can prove that if ele-
ments are distinct and all input permutations are equally likely, then quicksort
has average running time in O(n log n).
The recurrence for this average running time is basically

an =
2

n

’
i<n

ai + n � 1.

This requires a different solution method to the easier recurrences.

11.3 Quicksort recurrence solution

Let an be the average of Cn so that an = n � 1 + 1
n

Õ
1pn(ap�1 + an�p). Collect

common terms in the sums to obtain

an = n � 1 + 2

n

n�1’
j=0

aj .

Note that to compute each term using this recurrence, we require knowledge of
all previous terms. We first eliminate the history, (a general form of telescoping ).

We have for n > 1

nan � (n � 1)an�1 = n(n � 1) + 2
’

0 j<n
aj

� (n � 1)(n � 2) � 2
’

0 j<n�1
aj

= 2(n � 1) + 2an�1.

Thus nan = 2(n � 1) + (n + 1)an�1, so that

an
n + 1

=
2(n � 1)
n(n + 1) +

an�1
n
=

an�1
n
+

4

n + 1
� 2

n
.

We can iterate to obtain

an
n + 1

=
a1
2
+

n’
j=2

✓
4

j + 1
� 2

j

◆
= 4(Hn+1 � (1 + 1/2)) � 2(Hn � 1) · · · = 2Hn +

4

n + 1
� 4.
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11.4 Which inputs give the best and worst-case?

The worst case number of comparisons occurs when the pivot is always at the end
of the sublist. For example, if we always choose the first element as the pivot and
the input is in sorted order, this will happen. The running time is then ⇥(n2). The
best case occurs when the pivot turns out to be the median element, so that the
left and right subarrays are balanced at each level of the recursion, and this gives
running time in ⇥(n log n) as with mergesort.

11.5 Is quicksort in-place?

Not technically, but almost. It requires ⇥(lg n) space for the recursion stack. This
is very little extra space in practice, but it is not a constant amount.

11.6 Is quicksort stable?

No.

Example 11.5. Create an example that shows that quicksort is not a stable
sorting algorithm.

11.7 What happens if we use quicksort on a linked list?

Although it could be done, quicksort is almost never used on a linked list. It is too
difficult to quickly find a good pivot element, for example.

11.8 How can we improve quicksort?

If we always choose the first element of the list as the pivot, it is easy to implement
but the worst-case runtime is ⌦(n2), and it is easy for a malicious adversary to
submit input which will trigger this behaviour. This naive choice (the first one
used by Hoare) is very rarely used any more.

For a better way of choosing the pivot, we can take the median of a sample of (say
3) elements. This reduces the likelihood of worst-case behaviour and also makes
performance on sorted arrays and arrays with equal keys better.
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Choosing a pivot element uniformly at random (or randomly shuffling the list and
choosing the first element) gives a randomized algorithm whose expected run-
ning time on every input can be proved to be in O(n log n).
No matter how we choose the pivot as above, there is always some chance of
quicksort running in quadratic time. Choosing the exact median turns out to be
too time-consuming: see Lecture 14.

It is best to use insertion sort once the sublists become very small, to avoid ex-
cessive overhead owing to recursion. Choosing the cutoff point requires more
detailed analysis; somewhere around 10 is often used. This idea can be used with
any recursive sorting algorithm.
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Lower complexity bound for sorting

We have seen that various algorithms do different amounts of work on different
inputs, and their best and worst case inputs are different in general.

Example 12.1. How many comparisons do selection sort, insertion sort,
mergesort, quicksort do on the following input?

3 1

selection sort

24

insertion sort

mergesort

quicksort

Is it possible to sort n items in O(n) time in the worst case? Is there a general sorting
algorithm A and constant c > 0 such that for all inputs of size n, A uses at most cn
comparisons to sort? Interestingly, the answer is no, as we shall now see.

Let algo be a comparison-based sorting algorithm. The execution of algo on
an input of n distinct keys can be modelled by a decision tree. This is a binary
tree whose leaves are the n! possible permutations of the keys. At each step we
can only ask a Yes/No question of the form “(ai < aj)?”, and this determines the
branching: left for Yes, right for No. The number of comparisons required to ob-
tain the output at a leaf is the length of the path from the root to that leaf (the
depth of the leaf node). Thus the worst case number of comparisons is the maxi-
mum depth (the height) of the tree.
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Example 12.2. Here is the decision tree for selection sort when run on an
input list of size 3. The label “i vs j” means that the ith element of the input
list is compared to the jth element, by asking “is a[i] < a[ j]?”

1 vs 2

2 vs 3 1 vs 3

1 vs 2 1 vs 3 1 vs 2 2 vs 3

The next figure shows the corresponding decision tree for insertion sort. We
add in the grey background nodes to give information about which input
yields which sequence of comparisons.

1 < 2

2 < 3 1 < 3

1 < 3 2 < 3
123

132 312

213

231 321

12.1 Worst case height of binary decision tree

So, what can be said about the height of a binary tree with n nodes?

Suppose that T is a binary tree with n nodes. Going from the root, the number of
nodes at each level at most doubles. So if the maximum depth (height) is h then
the number of leaves is at most 2h.

In our sorting decision tree we have n! leaves. Thus we must have 2h � n! and
therefore h � lg n!.

12.2 Worst case running time of comparison-based sorting algorithm

We have already shown that log n! is ⌦(n lg n). Thus the worst-case number of
comparisons of any comparison-based sorting method must grow at least at the
asymptotic rate n log n (any input that had duplicates could only make the worst
case worse!)
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Example 12.3. We showed that the worst case for any sorting algorithm is in
⌦(n lg n). What about the average case?

Example 12.4. Radix sort can sort n strings in time in⇥(n). What can we con-
clude about radix sort? Look it up and check your guess.
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Priority queues and heapsort

In selection sort, finding the minimum of a[i..n � 1] by sequential search is slow,
and it dominates the running time. Can we do this operation faster? Not with the
current data structure. We want a data structure that allows us to find and extract
the minimum quickly. This will have applications to problems other than sorting.

13.1 Priority queues

Definition 13.1. A priority queue is a container ADT where each element has a
key (from a totally ordered set, as with sorting) called its priority. There are op-
erations allowing us to insert an element, and to find and delete the element of
highest priority.

Priority queues are important in many areas: discrete event simulation, graph
algorithms (later in this course), sorting, . . . . Priority queues can be implemented
in many ways: unsorted list, sorted list, binary heap, binomial heap, . . . .

Example 13.2. Show how (a) a queue and (b) a stack can be interpreted as
special cases of a priority queue.

13.2 Priority queue sort

Suppose we are given an input list. Start with an empty priority queue Q and

• successively insert all elements into Q, using the sorting keys as the priority;

• successively remove the highest priority element until Q is empty.

This gives a sorting algorithm that is obviously correct.
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13.3 Priority queue sort analysis

• If we implement Q using an unsorted list, we obtain selection sort. Insertion
takes ⇥(1) time but deletion time is ⇥(n). The total is quadratic.

• If we use a sorted list to implement Q, we obtain insertion sort. Insertion
takes ⇥(n) time but deletion is ⇥(1). The total is quadratic.

• We can do better with an implementation in which insertion and deletion
each take time O(log n). The simplest is the binary heap.

13.4 Priority queue: binary heap implementation

Definition 13.3. A binary heap is a binary tree that

• is left-complete (every level except perhaps the last is full and the last level
is left-filled);

• has the partial order property (on every path from the root, the keys de-
crease).

Example 13.4. The tree on the left is a heap. The other two trees are not
heaps; the one in the middle is not left-complete and the one on the right
does not have the partial order property.
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A heap can implement a priority queue as follows.

• Keys are stored in nodes.

• To insert a node, create a new leaf at the bottom level as far left as possible.
Swap it upward until no swap is required.

• To delete the maximum, remove the root. Put the rightmost leaf in the root
position. Swap it downward (choosing the larger child each time) until no
swap is required.
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Example 13.5. Example of heap insertion and deletion.

943 10

14

11 7

43 10

14

11

7

9

43 10

14

11 7

43 10

11 9

7

43 10

11

97

43

10

11

9

7

add 9 swap

upwards

remove root

move 7 up

swap

downwards

swap

downwards

13.5 Heapsort analysis

• Building a heap using n successive insertions takes time in O(n log n) since
the tree has height in O(log n).

• Deleting the root n times, restoring the heap property each time, takes time
in O(n log n).

• Thus heapsort is a worst-case ⇥(n log n) sorting algorithm, like mergesort.

13.6 How can we improve the algorithm?

It turns out we can make heapsort work in-place without building a separate
heap, because the tree structure is so restricted.

13.7 Array representation of binary heap

• A binary heap can be represented implicitly (without pointers) in an array.

� Each node corresponds to an array index (starting with 1).

� The children of the node corresponding to index k are in positions 2k
(left) and 2k + 1 (right). The keys are stored directly in the array.

• To insert a key x, put it in position n + 1 and swap as above.

• To delete the root, swap a[1] with a[n], and swap as above. Note that deleted
elements end up at the end of the array.
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Example 13.6. Give the array representation of the binary heap.
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Note that for heapsort we only need the heap property at the end, but our method
keeps it after inserting every element. Can we be more efficient? Yes - one way is to
build a complete binary tree without the heap property, then recursively heapify
the left and right subtrees, and then let the root swap down to the right position.
The recursion T(n) = 2T(n/2)+lg n describes the running time of the latter method:
solution is ⇥(n) (exact formula is tricky to guess).

This method can be rewritten to avoid recursion (“bottom-up”) and to work in
place in the array implementation.

There is still serious research being done on better priority queue implementa-
tions.

Example 13.7. Heap-building algorithm as in the first while-loop of Algo-
rithm 16.
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Algorithm 16 Heapsort.
1: function HEAPSORT(array a[0..n � 1])
2: k  n � 1 . index of last leaf in heap
3: i  b n�12 c
4: while i � 0 do
5: sink(a, i, k) . let element sink to its correct place
6: i  i � 1

. heap now built
7: while k > 0 do
8: swap(a[k], a[0])
9: k  k � 1

10: sink(a, 0, k) . let element at root sink to its correct place
11: return a . array is now sorted

Example 13.8. Complete the last steps of Heapsort.

15

25

7065 50 202 912531 158

8

20

5031

65 70

91

sorted

swap root
2

15

25

70 65 50 202 912531 158

8

20

50

31

65

91

sink root

2

70

15

25

7065 50 20 2 912531 158

820

5031

65

91

sink root
2

70

swap root

25

820

50

31

65 91

sink root
2

70

swap root

706550 20 2 912531 158

15

25

8

20

50

31

65 91

sink root
2

70

swap root

706520 2 9131 15 8

15

5025

25

8

20

5031

65 91

sink root
2

70

swap root

706520 2 913115 8

15

5025

5031

65 91

sink root

70

swap root

7065 9131 50

5031

65 91

sink root

70

swap root

7065 9131 50

5031

65 91

sink root

70

swap root

7065 9131 50

5031

65 9170

swap root

7065 9131 50



Lecture 14

Data selection and quickselect

The table below gives a summary of results so far on sorting algorithms. Running
times give asymptotic order only. Shellsort analysis depends on the increments
used, and is difficult. Quicksort needs a stack of size ⇥(log n) for the recursion.
Selection sort is stable for linked lists. Mergesort is in-place for linked lists.

Method Worst Average Best Stable? In-place?
Insertion n2 n2 n Yes Yes
Selection n2 n2 n2 No Yes
Shellsort ?? ?? n No Yes

Mergesort n log n n log n n log n Yes No
Quicksort n2 n log n n log n No Almost
Heapsort n log n n log n n log n No Yes

14.1 Selection

We want to consider a related but different topic. Fix r with 1  r  n. We want to
find the element with the rth key from an input list (the rth order statistic). This
should be easier than sorting!

Example 14.1. Suppose that we build a priority queue and repeatedly extract
elements until we get the one we want. What is the asymptotic running time
in terms of n and r?

14.2 Quickselect

One good approach is to use the quicksort idea. At each stage we only need to
make a recursive call on one half of the array because we know where the pivot is
relative to the desired element. This algorithm is called Quickselect .
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Algorithm 17 Quickselect.
Require: 0  i  j  n � 1, 1  r  j � i + 1

function QUICKSELECT(list a[0..n � 1], int i, int j, int r)
if i  j then

p a[i] . pivot element
q PARTITION(a, i, j, p) . put p in correct position
if q � i = r � 1 then

return a[r � 1]
else if q � i > r � 1 then

QUICKSELECT(a, i, q � 1, r) . look in left half
else

QUICKSELECT(a, q + 1, j, r � q + i � 1) . right half

Example 14.2. Execute quickselect on the array below. Hint: You have to
make one recursive call to the left and one to the right.
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14.3 Quickselect analysis

The recurrence for the average number of comparisons has the form

E(n) = n +
1

n

n�1’
i=0

E(p).

This has a solution that is⇥(n), via the same method used for the quicksort recur-
rence.
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Example 14.3. Solve the quickselect recurrence above.

The worst case running time is still quadratic, for the same reason as for quicksort.

14.4 How can we improve quickselect?

There is another divide-and-conquer algorithm (see Wikipedia, “Median of me-
dians”) that is worst-case linear, but much more complicated and never used in
practice. Note that if it did work well in practice, we would use it to find an op-
timal (i.e. median) pivot, and thereby achieve O(n log n) worst case running time
for quicksort.



Part III

Analysis of searching



Lecture 15

Searching, binary search trees

15.1 Table ADT

Definition 15.1. A table is an ADT that supports operations to insert, retrieve and
delete an element with given search key. Another name is dictionary.

Tables are used for databases. There are many ways in which a table could be
implemented; with an unsorted list, with a sorted list, with a (balanced) binary
search tree, with a hash table.

15.2 Sequential search

In a list with no other structure, the only way to find an element is to check each
element. This takes time in⇥(n) for any reasonable implementation (such as array
or linked list).

We only need to be able to iterate through the elements in linear time, so even
more general structures than lists also allow for this type of search.

15.3 Binary search

In a sorted list where constant time access is possible (such as an array imple-
mentation), we can find a key K as follows.

• Start at the middle element y, and recursively go left (right) if y > K (if y < K);

• stop if we hit K or search subinterval is empty.

Note that binary search is conceptually easy but surprisingly hard to program cor-
rectly even for professionals (see J. Bentley, Programming Pearls).

The (worst-case) recurrence for the running time is T(n) = 1 + T(bn/2c), with the
solution in ⇥(log n). The best case is when we find the element on the first try (it
is in the middle position).

The execution of this algorithm (looking for all possible keys) can be described by
a decision tree called a (static) binary search tree. The number of comparisons
required to find the key is the depth of the leaf containing that key.
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Algorithm 18 Binary search.
1: function BINSEARCH(sorted list a[0..n � 1], key K)
2: L  0
3: R n � 1
4: while L  R do
5: m b(L + R)/2c .median index
6: if A[m] < K then
7: L  m + 1
8: else if A[m] > K then
9: R m � 1

10: else
11: return m . key present at index m

return �1 . key not present in list

15.4 Binary search trees

Definition 15.2. A binary search tree (BST) is a binary tree with keys stored in
nodes, such that the key of each node is � the key of every node in the left subtree
and  the key of every node in the right subtree.

A BST implements the Table ADT. To find/insert a key, use binary search as de-
scribed above. To remove a node, we need more work:

• A node with no children: simply delete.

• A node with only one child: delete the node, connect the child to the parent.

• A node n with two children: find the minimum key K in the right subtree,
delete that node, and replace the key of n by K.

Example 15.3. Follow the above steps to delete node 11 in the BST shown.

42

11

0

4 29

28 36

51



62 Lecture 15: Searching, binary search trees

15.5 Analysis of BST operations

The running time of all basic operations is proportional to the number of nodes
visited. In the worst case, finding/removing/inserting take time in⇥(h) where h is
the height of the tree. Unfortunately the height can be as large as n�1 in the worst
case. Hence we need another idea to guarantee good worst-case performance –
we need to rebalance BSTs.

Example 15.4. When deleting a node in a BST, what if we use the maximum
key in the left subtree instead? Carry this out for node 11 in the BST shown in
Example 15.3.

The above example shows that if for deletion we instead choose the maximum
key in the left subtree, everything proceeds as expected. However, if we always
use the same side for deletion, this can lead to unbalance. Alternating sides, or
choosing a side randomly, will more likely result in a more balanced tree.

15.6 Treesort

As we did with heapsort, we can build a binary search tree from our initial list, by
inserting elements one at a time. We can recover the sorted list by reading the keys
according to an inorder traversal (as shown below). This takes time in ⇥(n log n).
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As with heapsort, we can do this in place in an array. This is basically quicksort!
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15.7 Relation between Quicksort and BSTs

After choosing the pivot and partitioning, we can represent the array as a binary
tree: pivot at the root, left subfile on the left, right subfile on the right. It has the
BST property with respect to the sort keys.

Given the above BST describing the execution of quicksort on the array, note that
the cost of constructing the tree (measured by key comparisons) is the same as
the number of comparisons used by quicksort in sorting the file. This is equal to
the internal path length, the sum of all depths of nodes.
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Thus the average search cost in a BST built by random insertions is ⇥(log n) .
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Self-balancing binary search trees

There are several classes of BSTs (such as AVL, red-black, AA) that perform rebal-
ancing operations at crucial times in order to keep the height close to lg n.

Example 16.1. How many types of self-balancing search trees can you find
(e.g. Wikipedia)?

These operations are based on local rotations of the tree. A right and left rotation
of a BST is shown below.
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An analysis of the performance is fairly difficult. The average-case height is not
really known.
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Example 16.2. Perform a right rotation on the BST around the vertices p = 50
and q = 74 as shown above. Then perform a left rotation on the resulting BST
around the vertices 12 and 50.
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16.1 AVL trees

AVL trees were the first self-balancing BSTs, introduced in 1962 by Adelson-Velskii
and Landis. The balance of a node is defined to be the difference between heights
of its right subtree and left subtree. AVL trees adjust themselves after each inser-
tion or deletion (via tricky rotations not discussed here – see Wikipedia for gory
details) so that each node has balance 0, 1 or �1.
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Example 16.3. An AVL tree on the left and a non-AVL tree on the right with
node balances shown below the nodes.
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16.2 Height of an AVL tree

Example 16.4. An AVL tree with n nodes has height at most 1.44 lg n, about
44% more than optimal.
Proof. Let Ah be the minimum number of nodes in a tree of height h. Clearly
A0 = 1, A1 = 2. The subtrees at the root are also AVL trees of height h�1 or h�2,
because of the balance property. Thus Ah � Ah�1 + Ah�2 + 1 (in fact we have
equality here (can you see why?)). This is similar to the Fibonacci recurrence,
and we know that Ah ⇠ C�h for some C > 0, where � = (1 +

p
5)/2. Taking

logarithms gives h ⇠ lg n/lg � ⇡ 1.44 lg n.

16.3 Red-black trees

Introduced in 1978, these have a balance condition that ensures (via tricky ro-
tations not discussed here – see Wikipedia for gory details) that the maximum
depth of a leaf is no more than twice the minimum depth. They do this by colour-
ing each node red or black (note that we are explicitly using external nodes), with
the rules:

• the root is black;

• all leaves (external nodes) are black, even when the parent is black;

• both children of every red node are black;

• every path from a node to a leaf contains the same number of black nodes.

We call the number of black nodes the black-height of a node, and denote it b(v).
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Example 16.5. A red-black tree on the left. The BST on the right is not a red-
black tree because not every path from 14 to a leaf contains the same number
of black nodes.
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16.4 Height of a red-black tree

Example 16.6. Prove by induction that the subtree rooted at node v has at
least 2b(v)�1 nodes. Then, using the fact that the height of the tree is at most
twice the black-height of the root, show that the worst case height of a red-
black tree on n nodes is at most 2 lg(n + 1).

16.5 Balanced search trees in practice (Dec 2018)

• Java Collections Framework uses red-black trees to implement TreeMap.

• C++ uses red-black trees to implement map.

• C# uses self-balancing trees to implement Sorted Dictionary.

• Python uses doubly-linked lists to implement OrderedDict.



Lecture 17

Hashing

Definition 17.1. A hash function is a function h that outputs an integer value for
each key. A hash table is an array implementation of the table ADT, where each
key is mapped via a hash function to an array index.

A hash function should:

• be computable quickly (constant time);

• produce hashed values that are uniformly distributed if keys are drawn uni-
formly at random;

• produce hash values that are “spread out” for keys that are “close”.

A hash function should be deterministic, but appear “random” – in other words it
should pass some statistical tests (similar to pseudorandom number generators).

Example 17.2. Suppose that we hash dictionary words by letting h(w) be the
address of the last letter of w, converted to lower case (so there are 26 slots in
the hash table, numbered 0, . . . , 25 to correspond to a, b, . . . , z).
List two words that are very “different” yet have the same hash value. Which
of the criteria listed above are satisfied by this hash function?

17.1 Collisions

The number of possible keys is usually much larger than the actual number of
keys so we do not want to allocate an array large enough to fit all possible keys.
But this means that hash functions are not 1-to-1. When two keys may be mapped
to the same index we call it a collision.

We need a collision resolution policy to prescribe what to do when collisions oc-
cur. We assume the first-come-first served model for resolving collisions.

We consider two collision resolution policies:
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1. Chaining uses an “overflow” list for each element in the hash table.

2. Open addressing uses no extra space. Every element is stored in the hash
table. If it gets overfull, we can reallocate space and rehash.

When a collision occurs in open addressing, we can

• probe nearby for a free position (linear probing, quadratic probing, . . . );

• go to a “random” position by using a second-level hash function (double
hashing ).

• We employ the convention that we always probe to the left.

17.2 Collision resolution via chaining

• Elements that hash to the same slot are placed in a list. The slot contains a
pointer to the head of this list.

• Insertion can then be done in constant time.

• Deletion can be done in constant time with a doubly linked list, for example.

• A drawback is the additional space overhead. Also, the distribution of sizes
of lists turns out to be very uneven.

Example 17.3. A hash table with chaining, showing empty chains and chains
of length 1, 2 and 3.
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Example 17.4. Using the hash function from Example 17.2 to hash the follow-
ing 14 words using chaining. What is the length of the longest chain formed?
The words are:
abacus, abaci, acrid, grampus, radii, celery, homely, comely, xylitol, animal,
seminar, seminal, radar, box

17.3 Collision resolution via open addressing

• Every key is stored somewhere in the array; no extra space is required.

• If a key k hashes to a value h(k) that is already occupied, we probe (look for
an empty space).

� The most common probing method is linear probing , which moves
left one index at a time, wrapping around if necessary, until it finds an
empty address. This is easy to implement but leads to clustering .

� Another method is double hashing . Move to the left by a fixed step
size t, wrapping around if necessary, until we find an empty address.
The difference is that t is not fixed in advance, but is given by a second
hashing function p(k).

Example 17.5. The hash table on the left uses linear probing, so d is inserted
two left of h(d) = h(a), because h(d)� 1 is already occupied. The hash table on
the right uses double hashing, so d is moved p(d) to the left of h(d) = h(a).
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Example 17.6. If we use the hash function for dictionary words, open ad-
dressing with linear probing, and the list of 14 words as above, where does
the word “comely” hash to in the table? If instead of linear probing we use
double hashing with p(w) defined to be the number of vowels in w, where
does “comely” end up?

Linear probing is simple but is prone to clustering – large stretches filled entries
form making average search times longer.

17.4 Analysis of hashing

Cost is measured by the number of key comparisons or probes.

Insertion has the same cost as an unsuccessful search, provided the table is not
full. Thus the average cost of a successful search is the average of all insertions
needed to construct the table from empty.

We often use the simple uniform hashing model. That is, each of the n keys is
equally likely to hash into any of the m slots. So we are considering a “balls in
bins” model.

If n is much smaller than m, collisions will be few and most slots will be empty. If
n is much larger than m, collisions will be many and no slots will be empty. The
most interesting behaviour is when m and n are of comparable size. We define the
load factor to be � := n/m.

Example 17.7. Compute the load factor for the hash tables shown in Exam-
ples 17.3 and 17.5.
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Analysis of hashing

This lecture presents theoretical results, some without proof. The analysis of hash-
ing leads to some interesting and tricky mathematics.

18.1 Analysis of balls in bins

The probability of no collisions when n balls are thrown into m boxes uniformly at
random is Q(m, n) where

Q(m, n) = m!

(m � n)!mn
=

m
m

m � 1
m
. . .

m � n + 1
m

.

Note that Q(m, 0) = 1,Q(m, n) = 0 for n > m.

For example, Q(366, 180) ⇡ 0.4487 ⇥ 10�23 (negligible chance of no collision when
180 balls thrown into 366 boxes) while Q(366, 24) ⇡ 0.4627 (more likely than not to
have a collision when throwing 24 balls in 366 boxes).
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Figure 18.1: Plots of Q(m, n) against n for m = 25, 100, 400, 1600

18.2 Analysis of chaining

With chaining, the worst case for searching is ⇥(n), since there may be only one
chain with all the keys. The average cost for an unsuccessful search is the average
list length, namely �.
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The average cost for a successful search is then

1

n

n’
k=1

(1 + k � 1
m

) = 1 +
n � 1
2m

⇡ 1 +
n
2m
= 1 + �/2.

Thus provided the load factor is kept bounded, basic operations all run in con-
stant time on average.

18.3 Analysis of open addressing

We assume uniform hashing : each configuration of n keys in a table of size m is
equally likely to occur. In other words, the hash function produces a uniformly
random permutation of the keys.

Uniform hashing is a theoretical model and cannot be implemented practically
but is a good approximation when double hashing is used.

We show in Section 18.4 that the average cost for insertion (unsuccessful search)
under uniform hashing is ⇥(1/(1 � �)) as m!1.

Linear probing is not well described by the uniform hashing model (because of
the clustering). The average insertion cost is ⇥(1 + 1/(1 � �)2) (proof omitted).

If the load factor is bounded away from 1, basic operations run in constant time;
otherwise performance will be very bad. We should resize as � grows!

Example 18.1. Sketch the functions f (�) = 1 + 1/(1 � �)2 and g(�) = 1/(1 � �)
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18.4 Unsuccessful search under uniform hashing hypothesis

• Let X be the number of probes taken for an unsuccessful search. Let pi be
the probability that we need to make i + 1 probes (exactly i probes hit an
occupied cell) and let qi be the probability that we make at least i+1 probes.

• Then E[X] = Õ
i(i + 1)pi =

Õ
i qi (why?).

• For i � 1, we have

qi =
✓
n
i

◆
/
✓
m
i

◆
=

n
m

n � 1
m � 1 . . .

n � i + 1
m � i + 1

 �i.

The exact value is then

E[X] = 1�m
n

� n’
j=0

✓(m � n) + j
m � n

◆
= · · · = 1 + m

1 + (1 � �)m

which is ⇥(1/(1 � �)) as �! 1. This agrees with intuition.

18.5 Statistics for balls in bins: some facts without proof

• When do we expect the first collision? This is the birthday problem. Answer:
E(m) ⇡

p
⇡m/2 + 2/3. So collisions happen even in fairly sparse tables.

• When do we expect all boxes to be nonempty? This is the coupon collector
problem. Answer: After about m log m balls. It takes a long time to use all
lists when chaining.

• What proportion of boxes are expected to be empty when n is⇥(m)? Answer:
e��. Many of the lists are just wasted space even for pretty full tables.

• When m is ⇥(n), what is the expected maximum number of balls in a box?
Answer: About (log n)/(log log n). Some of the lists may be fairly long.

18.6 Hashing in practice (Dec 2018)

• Java Collections Framework uses chaining to implement HashMap, resizing
when � > 0.75, and table size a power of 2.

• C++ uses chaining to implement unordered map, resizing when � > 1, and
prime table size.

• C# uses chaining, resizing when � > 1, and prime table size.

• Python uses open addressing, resizing when � > 0.66, and table size a power
of 2.
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Universal hashing

Hash functions must be deterministic, but we do not want to let users know what
they are. However, they can often guess. As with quicksort, a malicious user
can submit input data that makes the algorithm run an unreasonably long time,
which can cause security and performance problems.

Example 19.1. Java String hashcode computes the address of a string, say s =
s[0] · · · s[n�1] using integer arithmetic via the formula s[0] ·31n�1+s[1] ·31n�2+
... + s[n � 1]. Can you find two 2-character strings with the same hashcode?
Why might this cause a problem in practice?

A nice way to use randomization is to choose the hash function at runtime ran-
domly from a family of hash functions. Ideally, the probability of a collision be-
tween two elements is only 1/m, which is what a random guess would yield, so
malicious users cannot force collisions. A family of hash functions that satisfies
this is called universal.

Formally, if F is a universal family of hash functions then for any keys k , k 0,

1

|F | |{h 2 F : h(k) = h(k 0)}|  1

m
.
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Example 19.2. Construct the family of hash function F = {hab} by taking a
prime p � m and for 0 < a < p, 0  b < p define

hab(x) = ax + b mod p mod m.

Prove that this is a universal family.
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19.1 Summary of Table implementations

We summarise the table implementations that we have looked at so far in terms
of worst and average case.

Table 19.1: Worst case running time (asymptotic order)

Data structure Insert Find Delete Traverse
Unsorted list (array) 1 n n n

Unsorted list (pointer) 1 n n n
Sorted list (array) n log n n n

Sorted list (pointer) n n n n
Binary search tree n n n n

Balanced BST log n log n log n n
Hash table (chaining) n n n m + n

Table 19.2: Average case running time (asymptotic order)

Data structure Insert Find Delete Traverse
Unsorted list (array) 1 n n n

Unsorted list (pointer) 1 n n n
Sorted list (array) n log n n n

Sorted list (pointer) n n n n
Binary search tree log n log n log n n

Balanced BST log n log n log n n
Hash table (chaining) � � � m + n

Example 19.3. If we want to print out all items of a table in sorted order, what
is the best data structure? If we do not mind an occasional long wait and
mostly do lookups, which is best? If we do a lot of insertions and deletions
and few lookups, and are risk-averse, which is best?
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The graph abstract data type



Lecture 20

Graph definitions

Graphs are important and general mathematical objects that are widely used in
theory and practice. They distill the basic idea of a relationship among a set of ob-
jects. Informally we can think of a graph as a collection of dots (the set of objects)
with lines connecting them (describing the relationship). The lines can be either
directed (arrows) or undirected.

We are interested in the algorithmic aspects of graph theory (“how can we do it
efficiently and systematically?”). To talk about this precisely, we must start with
precise definitions.

Definition 20.1. A digraph G = (V, E) is a finite nonempty set V of nodes together
with a (possibly empty) set E of ordered pairs of nodes of G called arcs. Digraph
stands for directed graph.

Example 20.2. For the digraph shown, write down the sets V and E .

1 2

3 4

0

V =

E =

Definition 20.3. A graph G = (V, E) is a finite nonempty set V of vertices together
with a (possibly empty) set E of unordered pairs of vertices of G called edges. Note
that the singular of vertices is vertex.

Example 20.4. For the graph shown, write down the sets V and E .

1 2

3 4

0

V =

E =
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Some notes on graphs vs digraphs.

• In order to save writing “(di)graph” too many times, we treat the digraph as
the fundamental concept.

• When we say something about digraphs, nodes and arcs, it is understood to
also hold for graphs, vertices and edges unless explicitly stated otherwise.

• However, if we talk about graphs, vertices and edges, our statement is not
necessarily true for digraphs.

• Some authors use “undirected graph” to mean graph and use the term “graph”
to mean what we call a directed graph. We always use digraph and graph.

• E is a set so there are no multiple arcs between a pair of nodes.

• An arc that begins and ends at the same node is called a loop. We make the
convention that loops are not allowed in our digraphs.

• For a digraph G we may denote the node set V(G) and arc set E(G) for clarity.

• A graph can be viewed as a digraph where every unordered edge {u, v} is
replaced by two directed arcs (u, v) and (v, u). This works in most instances
and has the advantage of allowing us to consider only digraphs.

Definition 20.5. If (u, v) 2 E (that is, if there is an arc going from u to v) we say that
v is adjacent to u, that v is an out-neighbour of u, and that u is an in-neighbour
of v. In an (undirected) graph G, if {u, v} 2 E , then u is a neighbour of v and v is a
neighbour of u.

Example 20.6. In the digraph in Example 20.2, find all in-neighbours of
node 2 and all out-neighbours of node 0.

Definition 20.7. The order of a digraph G = (V, E) is |V |, the number of nodes.
The size of G is |E |, the number of arcs. We usually use n to denote |V | and m to
denote |E |.

For a given order n, the size m can be as low as 0 (a digraph consisting of n nodes
and no arcs) and as high as n(n�1) (each node can point to each other node; recall
that we do not allow loops).

Definition 20.8. If m is toward the low end, the digraph is called sparse, and if m is
toward the high end, then the digraph is called dense. These terms are obviously
very informal. For our purposes we will call a class of digraphs sparse if m is O(n)
and dense if m is ⌦(n2).
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Definition 20.9. A walk in a digraph G is a sequence of nodes v0 v1 . . . vl such
that, for each i with 0  i < l, (vi, vi+1) is an arc in G.

The length of the walk v0 v1 . . . vl is the number l (that is, the number of arcs in-
volved).

A path is a walk in which no node is repeated.

A cycle is a walk in which v0 = vl and no other nodes are repeated.

In a graph, a walk of the form u v u – going back and forth along the same edge – is
not considered a cycle. A cycle in a graph must be of length at least 3. Note that a
walk and a path can have length 0.

Example 20.10. For the graph on the left the following sequences of vertices
are classified as being walks, paths, or cycles. Complete the table.

1 2

3 4

0 vertex sequence walk? path? cycle?
0 3 2 no no
0 1 2 3 4 yes no
0 1 2 0 yes yes
0 1 0 yes no
1 2 3 4 2 0
3 yes

Example 20.11. Show that if there is a walk from u to v, then we can find a
path from u to v.

Definition 20.12. In a graph, the degree of a vertex v is the number of edges meet-
ing v. In a digraph, the outdegree of a node v is the number of out-neighbours of
v, and the indegree of v is the number of in-neighbours of v.

A node of indegree 0 is called a source and a node of outdegree 0 is called a sink.
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Definition 20.13. The distance from u to v in G, denoted by d(u, v), is the number
of arcs on a shortest path from u to v. If no path from u to v exists, the distance is
undefined (or +1).

For graphs, we have d(u, v) = d(v, u) for all vertices u, v.

Example 20.14. Give the following distances for the digraph on the left.

1 2

3 4

0
d(0, 1) =

d(2, 3) =

d(0, 4) =

d(2, 2) = d(4, 0) =

d(3, 2) =

Why are the values d(4, v) not defined unless v = 4?

20.1 Creating new digraphs from old ones

There are several ways to create new digraphs from old ones. One way is to delete
nodes and arcs in such a way that the resulting object is still a digraph (no arcs
missing endpoints).

Definition 20.15. A subdigraph of a digraph G = (V, E) is a digraph G0 = (V 0, E 0)
where V 0 ✓ V and E 0 ✓ E . A spanning subdigraph is one with V 0 = V ; that is, it
contains all nodes.

Example 20.16. A digraph (left) with a subdigraph (middle) and a spanning
subdigraph (right).

1 2

3 4

0

1 2

3

1 2

3 4

0

Definition 20.17. The subdigraph induced by a subset V 0 of V is the digraph G0 =
(V 0, E 0) where E 0 = {(u, v) 2 E | u 2 V 0 and v 2 V 0}.
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Example 20.18. For the digraph shown on the left, draw the subdigraph in-
duced by {1, 2, 3} on the right.

1 2

3

1 2

3 4

0

Definition 20.19. The reverse digraph of the digraph G = (V, E), is the digraph
Gr = (V, E 0) where (u, v) 2 E 0 if and only if (v, u) 2 E .

Example 20.20. Digraph G and its reverse Gr . We simply reverse all the ar-
rows.

1 2

3 4

0

1 2

3 4

0
G Gr

It is sometimes useful to ignore the direction of arcs in a digraph to find the asso-
ciated ‘underlying graph’.

Definition 20.21. The underlying graph of a digraph G = (V, E) is the graph G0 =
(V, E 0) where E 0 = {{u, v} | (u, v) 2 E}.

Note that the underlying graph does not have multiple edges even when there are
arcs (u, v) and (v, u). In that case, only one edge joins u and v in the underlying
graph G0.
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Example 20.22. Draw the underlying graph G0 of the digraph G.

1 2

3 4

0

1 2

3 4

0
G G0

Definition 20.23. We can combine two or more digraphs G1,G2, . . . Gk into a sin-
gle graph where the vertices of each Gi are completely disjoint from each other
and no arc goes between the different Gi. The constructed graph G is called the
graph union, where V(G) = V(G1)[V(G2)[ . . .[V(Gk) and E(G) = E(G1)[E(G2)[
. . . [ E(Gk).
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Graph data structures

When representing a digraph in a computer, we assume that it has nodes given in
a fixed order with the convention that the nodes are labelled 0, 1, . . . , n � 1.

Definition 21.1. Let G be a digraph of order n. The adjacency matrix of G is the
n ⇥ n Boolean matrix (often encoded with 0’s and 1’s) such that entry (i, j) is true if
and only if there is an arc from the node i to node j.

Definition 21.2. For a digraph G of order n, an adjacency lists representation is
a sequence of n sequences, L0, . . . , Ln�1. Sequence Li contains all nodes of G that
are out-neighbours of node i.

In the adjacency lists representation, Li may or may not be sorted in order of in-
creasing node number. Our convention is to sort them whenever convenient.
Many implementations do not enforce this convention.

Example 21.3. A graph and its adjacency matrix and adjacency list.

1 2

3 4

0 2666666664

0 1 1 0 0
1 0 1 0 0
1 1 0 1 1
0 0 1 0 1
0 0 1 1 0

3777777775

0 1 2
1 0 2
2 0 1 3 4
3 2 4
4 2 3

Notice that the number of 1’s in a row in the adjacency matrix is the outde-
gree of the corresponding node, while the number of 1’s in a column is the
indegree.
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Example 21.4. A digraph and its adjacency matrix and adjacency list.

1 2

3 4

0 2666666664

0 0 1 0 0
1 0 1 1 0
0 0 0 0 0
0 1 0 0 1
0 0 1 0 0

3777777775

0 2
1 0 2 3
2
3 1 4
4 2

An empty sequence occurs in the adjacency list where a node has no out-
neighbours (for example, sequence 2).

Sometimes the node labels in adjacency lists are omitted, so the digraph in Exam-
ple 21.4 would be written as:

2
0 2 3

1 4
2

Example 21.5. Give the adjacency matrix of the digraph below.

0

1

3

2

Draw the digraph corresponding to the given adjacency matrix.

2666666664

0 1 0 1 0
1 0 0 0 1
0 1 0 0 1
1 0 1 0 0
0 0 1 1 0

3777777775
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Example 21.6. Give the adjacency lists of the digraph below.

0

1

3

2

Draw the digraph corresponding to the given adjacency lists.

0 1 2
1 3
2
3 0 1 2

21.1 Representing multiple graphs in a single file

We can store several digraphs one after the other in a single file as follows:

• We have a single line giving the order at the beginning of each digraph.

• If the order is n then the next n lines give the adjacency matrix or adjacency
lists representation of the digraph. Node labels are omitted.

• The end of the file is marked with a line denoting a digraph of order 0.

Example 21.7. The two digraphs on the left could be put in a single file:

0 2
1 0
2 1

0 1 2
1 3
2
3 0 1 2

3
2
0
1
4
1 2
3

0 1 2
0
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21.2 Using other structures to represent graphs

Other specialized digraph representations may be used to take advantage of spe-
cial structure in a family of digraphs for improved storage or access time. For such
specialized purposes they may be better than adjacency matrices or lists.

For example, trees can be stored more efficiently. We saw in Lecture 13 how to
store a complete binary tree in an array. Here is way of storing a general tree in an
array.

• A general rooted tree of n nodes can be stored in array pred of size n.

• pred[i] is the parent of node i.

• The root has no parent, so assign it null or �1 if we number nodes from 0 to
n � 1 in the usual way.

• This is a form of adjacency lists, using in-neighbours instead of out-neighbours.

Example 21.8. Draw the tree represented by the array

pred = [�1, 0, 0, 1, 2, 2, 2, 3].

21.3 Implementation of digraph ADT

An adjacency matrix is simply a matrix which is an array of arrays.

Adjacency lists are a list of lists. There are several ways in which a list can be imple-
mented, for example by an array, or singly- or doubly-linked lists using pointers.
These have different properties, for example, accessing the middle element is⇥(1)
for an array but⇥(n) for a linked list. Searching for a value that may or may not be
in the list requires sequential search and takes ⇥(n) time in the worst case. We do
not consider other data structures (e.g. heaps) that can be used to represent lists.

21.4 Complexity of basic digraph operations

The basic operations we consider are checking for the existence of an arc between
two nodes, finding the outdegree of a node, finding the indegree of a node, adding
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an arc between two nodes, deleting an arc between two nodes, adding a node, and
deleting a node.

For the two data structures, consider the steps we need to carry out various basic
operations and the cost of all steps.

Example 21.9. Compare the matrix and lists data structures for checking
whether arc (i, j) exists.
Adjacency matrix representation: We need to check whether element (i, j) is
1. This requires accessing an array element twice, to first find the ith array
then its jth element. Each array access is in ⇥(1) so overall it is in ⇥(1).
Adjacency lists representation: We need to search for j in list i. The com-
plexity then depends on the length of list i. List i is length d where d is the
outdegree of node i so searching for j is in ⇥(d). But how large is d? Even
when the graph is sparse, it could still be the case that d is O(n), though typi-
cally in a sparse graph d is O(1). In a dense graph d is O(n).

Example 21.10. Compare the matrix/lists data structures for deleting a node.
Adjacency matrix representation:

Adjacency lists representation:

Table 21.1 shows the steps required and Table 21.2 the time required for basic
graph operations when using adjacency matrix or lists representations. Perfor-
mance for the adjacency list representation is based on using doubly linked lists.
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Table 21.1: Steps required to perform basic digraph operations by data structure.

Operation Adjacency matrix Adjacency lists
arc (i, j) exists? is entry (i, j) 0 or 1 find j in list i
outdegree of i scan row, count 1’s size of list i
indegree of i scan column, count 1’s for j , i, find i in list j
add arc (i, j) change entry (i, j) insert j in list i
delete arc (i, j) change entry (i, j) delete j from list i
add node create new row and column add new list at end
delete node i delete row/column i delete list i

shuffle other entries for j , i, delete i from list j

Table 21.2: Comparative worst-case performance of adjacency matrices and lists.

Operation Adjacency matrix Adjacency lists
arc (i, j) exists? ⇥(1) ⇥(d)
outdegree of i ⇥(n) ⇥(1)
indegree of i ⇥(n) ⇥(n + m)
add arc (i, j) ⇥(1) ⇥(1)
delete arc (i, j) ⇥(1) ⇥(d)
add node ⇥(n) ⇥(1)
delete node i ⇥(n2) ⇥(n + m)

Using lists, apparently similar problems like finding the outdegree (⇥(1)) and in-
degree (⇥(n + m)) have very different time complexity.

Clearly finding all indegrees would be slow if we just used multiple calls to a
method designed for getting the indegree of a single node.
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Example 21.11. Show that the sorted adjacency lists representation of the
reverse digraph of G can be found in time⇥(n+m) given the sorted adjacency
lists of G. Also show how this can be used to find indegrees for all nodes of G
in time ⇥(n + m).

21.5 Space requirements

The adjacency matrix representation requires ⇥(n2) storage as we simply need a
matrix of n2 bits.

At first guess we might say adjacency lists require⇥(n+m) storage, since we need n
lists and the combined length of all the lists is m. But node numbers require more
than one bit of storage each; the number k uses about ⇥(log k) bits. The average
entry in a list is n

2 , so the total space requirement is more like ⇥(n + m log(n))

Example 21.12. What is the storage requirement for a complete digraph on n
nodes, that is, a digraph where every possible arc occurs?
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For sparse digraphs, lists use less space than a matrix, whereas for dense digraphs
the space requirements are comparable.

The representation that is best will depend on the application and we cannot
make general rules. We will mostly use adjacency lists, which are clearly supe-
rior for many common tasks and generally better for sparse digraphs.



Part V

Graph traversals and applications
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Graph traversal algorithms

Traversals involve visiting each node of a digraph in a systematic way following
only the arcs in the digraph. This is a very common task when dealing with di-
graphs and we will cover several applications in later lectures.

22.1 The general graph traversal algorithm

All graph traversal algorithms have the same basic structure that relies on keep-
ing track of which nodes have been visited and whether they may be adjacent to
nodes that have not yet been visited. We use a system of three colours:

• White nodes have not yet been visited;

• Grey nodes (or frontier nodes) have been visited but may have out-neighbours
that are white;

• Black nodes have been visited and all their out-neighbours have been vis-
ited too (so are not white).

Example 22.1. Node states during a digraph traversal.

The traversal algorithm which visits all nodes in a digraph is loosely described as
follows:

• All nodes are white to begin with.

• A starting white node is chosen and turned grey.

• A grey node is chosen and its out-neighbours explored.

• If any out-neighbour is white, it is visited and turned grey. If no out-neighbours
are white, the grey node is turned black.

• The process of choosing grey nodes and exploring neighbours is continued
until all nodes reachable from the initial node are black.
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• If any white nodes remain in the digraph, a new starting node is chosen and
the process continues until all nodes are black.

We keep track of the order in which nodes are visited by recording which arc was
followed when a node first turned from white to grey. As we will see, this creates a
sub-digraph of the original digraph which has a tree structure.

The traversal algorithm is formalised in the pseudocode of Algorithms 19 and 20.
Algorithm 19 (traverse) initialises the process and is tasked with finding white
nodes to start from. Most of the work is done in Algorithm 20 (visit) which
takes a starting node and explores the portion of the subgraph reachable from
that node.

Algorithm 19 Basic graph traversal main routine: traverse.
1: function TRAVERSE(digraph G)
2: array colour[0..n � 1] . records node colour
3: array pred[0..n � 1] . records path of traversal as a tree
4: for u 2 V(G) do .make all nodes white
5: colour[u] WHITE
6: for s 2 V(G) do . find a white node
7: if colour[s] ==WHITE then
8: visit(s) . start traversal from s

return pred

Algorithm 20 Basic graph traversal subroutine: visit.
1: function VISIT(node s of digraph G)
2: colour[s] GREY
3: pred[s] null .make start node the root of the tree
4: while there is a GREY node do . continues until all nodes are black
5: choose a GREY node u
6: if u has a WHITE neighbour then
7: choose a WHITE neighbour, v
8: colour[v] GREY . v is visited for first time, so turns grey
9: pred[v] u .make u the parent of v in the traversal tree

10: else
11: colour[u] BLACK . u has no white neighbours so done with u

A call to visit creates a subdigraph of G that is a tree: the nodes are precisely the
black nodes (all nodes reachable from the initial node), and the arcs are those arcs
followed when we found a white neighbour of a grey node.

Each white node chosen in traverse is the root of a tree in the call to visit. Even-
tually, we obtain a set of disjoint trees spanning the digraph (that is, it includes all
the nodes of the digraph), which we call the search forest . The search forest is
returned by traverse in the array pred.
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Example 22.2. Traversal of a digraph. Visiting a white vertex turns it grey.

a

b

c

d

e

initialising all

nodes WHITE

a

b

c

d

e

visit(a) and visit WHITE

neighbour e, pred[e] a

a

b

c

d

e

a has no WHITE neighbour,

colour a BLACK

a

b

c

d

e

e has no WHITE neighbour,

colour e BLACK

a

d

e

c

b

visit(b) and visit WHITE

neighbour c, pred[c] b

a

e

c

b

d

choose GREY c, visit WHITE

neighbour d, pred[d] c

a

e

c

b

d

a

eb

d

choose GREY c, no WHITE

neighbour, colour c BLACK

c

search forest pred
(solid arcs)

a

e

d

choose GREY b, no WHITE

neighbour, colour b BLACK, . . .

c

b

22.2 Classifying arcs after a traversal

It helps in analysing the traversal algorithm to classify the arcs of G based on their
relationships in the search forest.

Definition 22.3. Suppose we have performed a traversal of a digraph G, resulting
in a search forest F. Let (u, v) 2 E(G) be an arc. Then (u, v) is a

• tree arc if it belongs to one of the trees of F;

• or, if it is not a tree arc, it is a

� forward arc if u is an ancestor of v in F;

� back arc if u is a descendant of v in F;

� cross arc if neither u nor v is an ancestor of the other in F.
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A cross arc may join two nodes in the same tree or point from one tree to another
in the search forest. Tree, forward and back arcs require that u and v be in the
same tree.

Example 22.4. Classify the arcs according to the definitions above.

a

e

c

b

d

(a, e) is a

(d, b) is a

(c, a) is a

The following theorem collects all the basic facts we need for proofs in later sec-
tions. The proofs are simple and can be done as exercises.

Theorem 22.5. Suppose that we have carried out traverse on G, resulting in a
search forest F. Let v,w 2 V(G).

• Let T1 and T2 be different trees in F and suppose that T1 was explored before
T2. Then there are no arcs from T1 to T2.

• Suppose that G is a graph. Then there can be no edges joining different trees
of F.

• Suppose that v is visited before w and w is reachable from v in G. Then v and
w belong to the same tree of F.

• Suppose that v and w belong to the same tree T in F. Then any path from v
to w in G must have all nodes in T .

Example 22.6. Assuming the first statement of Theorem 22.5, prove the third
statement.
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22.3 Running time for the general traversal algorithm

The generality of our traversal algorithm makes its exact running time impossible
to determine. It depends on how one chooses the next grey node u and its white
neighbour v. Some schemes for choosing u and v can be complex and depend on
n. The schemes we consider here are simple and constant time.

• The initialization of the array colour takes time⇥(n) so traverse is in⇥(n+t),
where t is the total time taken by all the calls to visit.

• We execute the while-loop of visit in total⇥(n) times since every node must
eventually move from white through grey to black.

• The time taken in choosing grey nodes is ⇥(n).

• The time taken to find a white neighbour involves examining each neigh-
bour of u and checking whether it is white, then applying a selection rule.

• The total time in choosing white neighbours is in ⇥(m) if adjacency lists are
used and is in ⌦(n2) if an adjacency matrix is used.

• So the running time of traverse is⇥(n+ (n+m)) = ⇥(n+m) if adjacency lists
are used, and ⇥(n + n2) = ⇥(n2) if the adjacency matrix format is used.

So for simple selection rules and assuming a sparse input digraph, the adjacency
list format seems preferable. But if more complex selection rules are used, for
example, choosing a single grey node is of order n while choosing a single white
node is still constant time, then the running time is asymptotically ⇥(n2) regard-
less of the data structure, so using the adjacency matrix is not clearly ruled out.
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Depth-first search (DFS)

Traversal algorithms differ in the rules for choosing the next grey and next white
node, with different rules leading to very different results.

Definition 23.1. In depth-first search (DFS) the new grey node chosen is the one
that has been grey for the shortest time.

DFS takes us away from the root node as quickly as possible. If the first visited
neighbour of the root has a neighbour, we immediately visit that neighbour. Then,
if that has a neighbour, we visit that and so on, thus “deeply” searching as far away
from the root as possible. We backtrack as little as possible before continuing
away from the root again. The root is the last node to turn black.

There still remains the choice of which white neighbour of the chosen grey node
to visit. It does not matter what choice is made but our convention is to choose
the one with lowest index (recall that nodes have indices 0, . . . , n � 1).

These choices can be made in constant time so that the running time is ⇥(n + m)
(assuming adjacency lists) and DFS is linear in the size + order of a digraph.

Example 23.2. A digraph and its DFS search tree, rooted at node 0. The
dashed arcs indicate the original arcs that are not part of the DFS search tree.

2 3

4 5

0 1

6

2 3

4 5

0 1

6

Find a tree arc, cross arc, forward arc and back arc (or say if that type of arc
does not exist for that traversal).
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Example 23.3. Use the nodes on the right to draw the search tree you obtain
by running DFS on the graph on the left, starting at vertex 0. Use dashed edges
to indicate edges that are not arcs in the search tree.

1 2

3 4

0

5 6

8

7

1 2

3 4

0

5 6

8

7

Find a tree arc, cross arc, forward arc and back arc (or say if that type of arc
does not exist for that traversal).

For a general digraph, and unlike the examples given here, all nodes may not be
reachable from the starting node. In this case, we get a search forest where the
number of trees in the forest is the number of calls made to DFSvisit.

23.1 Pseudocode for depth-first search

The “last in, first out” order of choosing grey nodes in DFS is mimicked by a stack
data structure. We thus store grey nodes in a stack as they are discovered.

The pseudocode for DFS and DFSvisit is in Algorithms 21 and 22.

• We loop through the nodes adjacent to the chosen grey node u, and as soon
as we find a white one, we add it to the stack.

• We also introduce a variable time and keep track of the time a node changes
colour.

• The array seen records the time a node turns grey.

• The array done records the time a node turns black.
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Algorithm 21 Depth-first search algorithm.
1: function DFS(digraph G)
2: stack S
3: array colour[0..n � 1], pred[0..n � 1], seen[0..n � 1], done[0..n � 1]
4: for u 2 V(G) do
5: colour[u] WHITE; pred[u] null . initialise arrays
6: time 0 . time will increment at every node colour change
7: for s 2 V(G) do
8: if colour[s] =WHITE then . find a WHITE node
9: DFSvisit(s) . start traversal from s

10: return pred, seen, done

Algorithm 22 Depth-first visit algorithm.
1: function DFSVISIT(node s)
2: colour[s] GREY
3: seen[s] time; time time+1
4: S.insert(s) . put s in stack
5: while not S.isEmpty() do
6: u S.peek() . get node at front of stack
7: if there is a neighbour v with colour[v] =WHITE then
8: colour[v] GREY; pred[v] u . visit neighbour, update tree
9: seen[v] time; time time+1 . record and increment time

10: S.insert(v) . put neighbour in stack
11: else
12: S.delete() . delete node from stack
13: colour[u] BLACK . colour it done
14: done[u] time; time time+1 . record and increment time

Given the relationship between stacks and recursion, we can replace the DFSvisit
procedure by a recursive version recursiveDFSvisit:

Algorithm 23 Recursive DFS visit algorithm.
1: function RECURSIVEDFSVISIT(node s)
2: colour[s] GREY
3: seen[s] time; time time+1
4: for each v adjacent to s do
5: if colour[v] =WHITE then . each unvisited neighbour
6: pred[v] s . update tree
7: recursiveDFSvisit(v) . now visit neighbour
8: colour[s] BLACK . visted all white neighbours so done
9: done[s] time; time time+1
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Example 23.4. DFS with recursiveDFSvisit.

1 3

2 4

0

time = 1

seen 0

recDFSvisit(0)

done

0

3

2 4

1

recDFSvisit(0)

time = 2

seen 0

done

1

recDFSvisit(1)

0

3

2 4

1

recDFSvisit(0)

time = 4

seen 0

done

1

recDFSvisit(1)
recDFSvisit(2)

2

3

0

2 4

1

recDFSvisit(0)

time = 5

seen 0

done

1

recDFSvisit(1)
recDFSvisit(3)

2

3

4

3

0

2

1

recDFSvisit(0)

time = 7

seen 0

done

1

recDFSvisit(1)
recDFSvisit(3)

2

3

4

3 recDFSvisit(4)

4

5

6

2 time = 10

seen 0

done

1

4

2

3

4 5

6

31

0

789



Lecture 23: Depth-first search (DFS) 103

Example 23.5. Execute DFS with recursiveDFSvisit and following Exam-
ple 23.4 fill out the values for seen and done, give the current time, and high-
light the DFS search tree after each step.

2

1

1 3

2 4

0

time =

seen

recDFSvisit(0)

done

3

2 4

1

time =

seen

done

seen

done

seen

done

seen

done

seen

done

time =

3

2 4

13

2 4

1

3

2 4

1 3

4

time = time =

time =

0

00

0 0

23.2 DFS useful results and facts

Theorem 23.6. Suppose that we have performed DFS on a digraph G, resulting in
a search forest F. Let v,w 2 V(G) and suppose that seen[v] < seen[w].

• If v is an ancestor of w in F, then

seen[v] < seen[w] < done[w] < done[v].

• If v is not an ancestor of w in F, then

seen[v] < done[v] < seen[w] < done[w].
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Note that this result rules out the timestamps seen[v] < seen[w] < done[v] <
done[w].
All four types of arcs in our search forest classification can arise with DFS. The
different types of arcs can be easily distinguished while the algorithm is running
or by looking at the timestamps seen and done.

Example 23.7. Explain how to determine, at the time when an arc is first ex-
plored by DFS, whether it is a tree-, back-, forward- or cross-arc.

Example 23.8. Suppose that we have performed DFS on a digraph G. Let
(v,w) 2 E . The following statements are true. Prove the first statement.

• (v,w) is a tree or forward arc if and only if

seen[v] < seen[w] < done[w] < done[v];

• (v,w) is a back arc if and only if

seen[w] < seen[v] < done[v] < done[w],

• (v,w) is a cross arc if and only if

seen[w] < done[w] < seen[v] < done[v].
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Breadth-first search (BFS) and priority-first
search (PFS)

Definition 24.1. In breadth-first search (BFS) the new grey node chosen is the
one that has been grey for the longest time.

BFS takes us away from the root node as slowly as possible. First we visit the root,
then all its neighbours, then all neighbours of its neighbours and so on. The root
is the first node to turn black.

As with DFS, the running time of BFS is in ⇥(n + m) when implemented using
adjacency lists.

Example 24.2. A digraph and its BFS search tree, rooted at node 0. The
dashed arcs indicate the original arcs that are not part of the BFS search tree.

2 3

4 5

0 1

6

2 3

4 5

0 1

6

Find a tree arc, cross arc, forward arc and back arc (or say if that type of arc
does not exist for that traversal).
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Example 24.3. Use the nodes on the right to draw the search tree you obtain
by running BFS on the graph on the left, starting at vertex 0. Use dashed edges
to indicate edges that are not arcs in the search tree.

1 2

3 4

0

5 6

8

7

1 2

3 4

0

5 6

8

7

Find a tree arc, cross arc, forward arc and back arc (or say if that type of arc
does not exist for that traversal).

24.1 Pseudocode for breadth-first search

The first-in first-out processing of the grey nodes in BFS is ideally handled by a
queue. The pseudocode for BFS and BFSvisit is in Algorithms 24 and 25. The
timestamps seen and done of DFS are of less use here. It is more useful to record
the number of steps from the root in the array d.

Algorithm 24 Breadth-first search algorithm.
1: function BFS(digraph G)
2: queue Q
3: array colour[0..n � 1], pred[0..n � 1], d[0..n � 1]
4: for u 2 V(G) do
5: colour[u] WHITE; pred[u] null . initialise arrays
6: for s 2 V(G) do
7: if colour[s] =WHITE then . find a WHITE node
8: BFSvisit(s) . start traversal from s
9: return pred, d
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Algorithm 25 Breadth-first search visit algorithm.
1: function BFSVISIT(node s)
2: colour[s] GREY; d[s] 0
3: Q.insert(s) . put s in queue
4: while not Q.isEmpty() do
5: u Q.peek() . get node at front of queue
6: for each v adjacent to u do
7: if colour[v] =WHITE then . find white neighbours
8: colour[v] GREY; pred[v] u; d[v] d[u] + 1
9: Q.insert(v) . update colour, tree, and depth, put in queue

10: Q.delete() . done with this node
11: colour[u] BLACK

Example 24.4. BFS on a digraph.

2 4

BFSvisit(0)

4

3

2

4

2 4

Q

d

Q

d

Q

d

Q

d

Q

d

1 3

0

1 3

0

1 3

2

2

4

0

1

2

0 1 1 0 1 12

42

0 1 12 2

3

4

0

1 3

0 1 12 2

0 1 12 2

0

1 3

BFSvisit(1)

BFSvisit(3)BFSvisit(2)

BFSvisit(4)
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Example 24.5. Execute BFS starting at 0 and following Example 24.4 fill out
the values for Q and d, and highlight the BFS search tree after each step.

2

4

BFSvisit(0)

Q

d

Q

d

Q

d

Q

d

Q

d

1

3

50

2

41

3

50

2

41

3

50

2

41

3

50

2

41

3

50

Q

d

2

41

3

50

24.2 BFS useful results and facts

It is rather obvious that BFS processes all nodes at distance 1, then all nodes at dis-
tance 2, etc, from the root. The formal theorem stating this is given below without
proof (see book for a simple inductive proof).

Theorem 24.6. Suppose we run BFS on a digraph G. Let v 2 V(G), and let r be the
root of the search tree containing v. Then d[v] = d(r, v).

We can classify arcs, but the answer is not as nice as with DFS.
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Theorem 24.7. Suppose that we are performing BFS on a digraph G. Let (v,w) 2
E(G) and suppose that we have just chosen the grey node v. Then

• if (v,w) is a tree arc then colour[w] =WHITE, d[w] = d[v] + 1;

• if (v,w) is a back arc, then colour[w] = BLACK, d[w]  d[v] � 1;

• there are no forward arcs; and

• if (v,w) is a cross arc then one of the following holds:

� d[w] < d[v] � 1, and colour[w] = BLACK;

� d[w] = d[v], and colour[w] = GREY;

� d[w] = d[v], and colour[w] = BLACK;

� d[w] = d[v] � 1, and colour[w] = GREY;

� d[w] = d[v] � 1, and colour[w] = BLACK.

Example 24.8. Explain why there are no forward arcs when performing BFS
on a digraph.

In the special case of graphs we can say more.

Theorem 24.9. Suppose that we have performed BFS on a graph G. Let {v,w} 2
E(G). Then exactly one of the following conditions holds.

• {v,w} is a tree edge, |d[w] � d[v]| = 1;

• {v,w} is a cross edge, d[w] = d[v];

• {v,w} is a cross edge, |d[w] � d[v]| = 1.



110 Lecture 24: Breadth-first search (BFS) and priority-first search (PFS)

24.3 Priority-first search

Priority-first search is a more general and sophisticated form of traversal that en-
compasses both BFS and DFS (and others).

• Each grey node has associated with it an integer key.

• The interpretation of the key is of a priority: the smaller the key, the higher
the priority.

• The rule for choosing a new grey node is to choose one with the smallest key.

• The key can either be assigned once when the node is first seen and then
left unchanged, or could be updated at other times. We concentrate on un-
changing keys here.

• To mimic BFS, set the key for the node v to be the time that v turns grey. It
will always remain as the lowest key until it turns black.

• To mimic DFS, set the key for node v to be � seen[v], so that the most re-
cently seen node has the lowest key.

• The running time of PFS depends on how long it takes to find the minimum
key value.

• The rules described here implemented using an array take ⌦(n) to find the
lowest key, so the algorithm is⇥(n2). Contrast with with⇥(m+n) for standard
traversal.

• PFS is best described via the priority queue ADT, which has more efficient
implementations than using a standard array.

Pseudocode PFS and PFSvisitdemonstrating the PFS is presented in Algorithms 26
and 27. The subroutine setKey there is the rule for giving the key value when a
node is inserted. We do not include any code for setKey.

Algorithm 26 Priority-first search algorithm.
1: function PFS(digraph G)
2: priority queue Q
3: array colour[0..n � 1], pred[0..n � 1]
4: for u 2 V(G) do
5: colour[u] WHITE; pred[u] null

6: for s 2 V(G) do
7: if colour[s] =WHITE then
8: PFSvisit(s)
9: return pred
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Algorithm 27 Priority-first visit algorithm.
1: function PFSVISIT(node s)
2: colour[s] GREY
3: Q.insert(s, setKey(s))
4: while not Q.isEmpty() do
5: u Q.peek()
6: if u has a neighbour v with colour[v] =WHITE then
7: colour[v] GREY
8: Q.insert(v, setKey(v))
9: else

10: Q.delete()
11: colour[u] BLACK

Example 24.10. Execute PFS on the graph below so that nodes with higher
degree have higher priority (recall that a lower key corresponds to a higher
priority).
Start the traversal at vertex 0 and break ties by choosing the vertex with the
lower index first.
At each step add one vertex and edge to the search tree.

1
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2 1
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Topological sort, acyclic graphs and girth

Many computer science applications require us to find precedence (or dependen-
cies) among events. If we consider the events to be nodes and an arc (u, v) means
that u precedes v, that is, that u must be calculated before v can be calculated,
deciding the order in which to process events becomes a problem of sorting the
nodes of a digraph.

Example 25.1. Consider a compiler evaluating sub-expressions of the expres-
sion �(a + b) ⇤ (b+ c) + ((b+ c) + d). The compiler must compute, for example,
(a + b) and (b+ c) before it could compute �(a + b) ⇤ (b+ c). This can be shown
as a dependency digraph where the arc (u, v) means that u depends on v so
that v must be calculated first (this is the opposite of a precedence digraph
discussed above).

+

�(a+ b) ⇤ (b+ c) + ((b+ c) + d)

⇤
+

a b c d

�

+ +

Respecting all precedences/dependencies is equivalent to drawing the digraph
with all nodes in a straight line and the arcs all pointing the same direction. The
order of calculation starts at one end of the line and proceeds to the other.

25.1 Topological sort

Definition 25.2. Let G be a digraph. A topological sort of G is a linear ordering of
all its vertices such that if G contains an arc (u, v), then u appears before v in the
ordering. It is also known as a topological order or linear order .

For our arithmetic expression example above, a linear order of the sub-expression
digraph gives us an order (actually the reverse of the order) where we can safely
evaluate the expression.
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Example 25.3. A digraph with all possible topological orders and drawn
with topological order 0, 1, 2, 3, 4. Draw the digraph for the topological order
0, 2, 1, 4, 3.

1 2

3

0

4

0, 1, 2, 3, 4 0 1 2 3 4

00, 2, 1, 4, 3

0, 1, 2, 4, 3

0, 2, 1, 3, 4

2 1 34

Find a topological order of the following digraph and draw it.

0

1

2

3

4

5

Topological orders are not unique. List all possible topological orders of the
following digraph.

0

1 2

3 4

If the digraph contains a cycle, it is not possible to find such a linear ordering. This
corresponds to inconsistencies in the precedences given (for example, a precedes
b precedes c precedes a) and no scheduling of the tasks is possible.

Definition 25.4. A digraph without cycles is commonly called a DAG, an abbrevi-
ation for directed acyclic graph.

Theorem 25.5. A digraph has a topological order if and only if it is a DAG.
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Example 25.6. It is clear that if a digraph has a topological order it has no
cycles, so it a DAG. Show that a DAG always has a topological order by first
showing that every DAG has a source and that by removing the source and
any out-arcs from the source you still have a DAG. Show that the order in
which nodes are removed gives a topological order.

This theorem and proof then gives an algorithm zero-indegree sorting for topo-
logically sorting a DAG. If we apply zero-indegree sorting to a digraph that is not a
DAG, eventually it will stop because no source node can be found at some point.

Example 25.7. What is the running time of a naive implementation of zero-
indegree where a source is found and then removed at each step? How could
this idea be made more efficient?

25.2 Finding cycles and topological sorting using DFS

DFS can be used to determine whether or not a digraph is a DAG and, if it is, find
a topological sort.

• Run DFS on G.

• If G contains a cycle, the traversal will eventually reach a node that points to
one that has been seen before. In other words, we will detect a back arc.

• If the traversal finds no back arcs, G is a DAG and the listing nodes in reverse
order of DFS done times is a topological sort of G.
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Theorem 25.8. Suppose that DFS is run on a digraph G. Then G is acyclic if and
only if there are no back arcs.

Theorem 25.9. Let G be a DAG. Then listing the nodes in reverse order of DFS
finishing times yields a topological order of G.

Proof. Consider any arc (u, v) 2 E(G). Since G is a DAG, the arc is not a back arc
by Theorem 25.8. In the other three cases, Example 23.8 shows that done[u] >
done[v], which means u comes before v in the alleged topological order. ⇤

Example 25.10. Find the topological order for the graph shown by running
DFS starting at node 0. Is it the same order you produced for this graph in
Example 25.3?

0

1

2

3

4

5

25.3 The girth of a graph

The length of the smallest cycle in a graph is an important quantity. For exam-
ple, in a communication network, short cycles are often something to be avoided
because they can slow down message propagation.

Definition 25.11. The girth of the graph is the length of the shortest cycle. If the
graph has no cycles then the girth is undefined but may be viewed as +1.

For a digraph we use the term girth for its underlying graph and the (maybe non-
standard) term directed girth for the length of the smallest directed cycle.

Example 25.12. What are girth and directed girth of the following digraph?

1 2

3 4

0
girth:

directed girth:
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Finding girth using BFS, connectivity, and
components

26.1 Finding the girth of a graph with BFS

How to compute the girth of a graph? Here is an algorithm for finding the length
of a shortest cycle containing a given vertex v in a graph G.

• Perform BFSvisit starting at v.

• If we meet a grey neighbour (that is, we are exploring edge {x, y} from x and
we find that y is already grey), continue only to the end of the current level
and then stop.

• For each edge {x, y} as above on this level, if v is the lowest common ancestor
of x and y in the BFS tree, then there is a cycle containing x, y, v of length
l = d(x) + d(y) + 1.

• Report the minimum value of l obtained along the current level.

Example 26.1. Prove above algorithm is correct by showing that:

1. meeting a grey neighbour means that you have indeed found a cycle;

2. any cycle that exists will be found in such a way; and

3. the cycle found in this way will be the shortest going through v.
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To compute the girth of a graph, we can simply run the above algorithm from each
vertex in turn, and take the minimum cycle length achieved.

Example 26.2. An easy-to-implement DFS idea may not work properly. Con-
sider the DFS tree originating from vertex 0 of the graph below. Which is the
smallest cycle it finds with the back edges? Which smaller cycle does it miss?

0 1

2

3

4

5 6

7 8

26.2 Finding the directed girth of a digraph with BFS

A similar idea can be applied to finding the directed girth of a digraph.
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Example 26.3. Convince yourself that the following procedure finds the
(length of the) shortest directed cycle through node v in a digraph.

1. Run BFSvisit starting at node v.

2. The first time a back-arc of the form (x, v) is found, we have found a
cycle of length equal to (1 + the depth of x in the search tree).

3. Stop and Return the length found.

Why is there no need to continue to the end of the level before halting
the traversal? How can this be used to find the directed girth of the di-
graph? What is the running time for doing so?

26.3 Connectivity in graphs

For many purposes it is useful to know whether a digraph is “all in one piece”, and
if not, to decompose it into pieces.

Definition 26.4. A graph is connected if for each pair of vertices u, v 2 V(G), there
is a path between them.

Theorem 26.5. Let G be a graph. Then G can be uniquely written as a union of
subgraphs Gi such that

• each Gi is connected, and

• if i , j, there are no edges from any vertices in Gi to any vertices in G j .

The subgraphs Gi above are called the connected components of the graph G.
Clearly, a graph is connected if and only if it has exactly one connected compo-
nent.
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Example 26.6. The graph obtained by deleting two edges from a triangle has
2 connected components. Draw a graph with 5 vertices, 5 edges and 2 con-
nected components.

We can determine the connected components of a graph easily by using a traver-
sal algorithm. The following obvious theorem explains why.

Theorem 26.7. Let G be a graph and suppose that DFS or BFS is run on G. Then
the connected components of G are precisely the subgraphs spanned by the trees
in the search forest.

So to find the components of a graph G:

• Run BFS or DFS on G and count of the number of times we choose a root –
this is the number of components.

• Store or print the vertices and edges in each component as we explore them.

• This is a linear time algorithm, O(m + n).

26.4 Connectivity in digraphs

The intuition of a digraph being “all in one piece” is not as useful as it was for
graphs.

Example 26.8. This digraph appears to be “all in one piece” as its underly-
ing graph is connected. But can you get from any node to any other node
following the direction of the arcs?

2
3

4

5

0
1

6

This example motivates the following definition.
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Definition 26.9. A digraph G is strongly connected if for each pair of nodes u, v
of G, there is a path in G from u to v and from v to u (that is, u and v are reachable
from one another).

Example 26.10. Show that a strongly connected digraph of order at least two
contains at least one cycle.

Definition 26.11. A strongly connected component , Gi, of G is a maximal sub-
digraph of G such that Gi is strongly connected. All nodes of G are in exactly one
such Gi, so the partition into strongly connected components is unique.

Example 26.12. This digraph has three strongly connected components.
Find and draw the two missing ones.

2 3

4 5

0 1

5

4 55

Note that there are arcs of the digraph not included in the strongly connected
components.
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Example 26.13. Find a counter-example to show that the method for finding
connected components of graphs in Theorem 26.7 fails at finding strongly
connected components of digraphs.

Example 26.14. Using BFSvisit or DFSvisit, devise an algorithm that will
determine whether or not G is strongly connected (i.e., has a single strongly
connected component). What is the running time of the algorithm?



Lecture 27

Finding strong components, and bipartite
graphs

27.1 Finding the strongly connected components

It turns out we can find all connected components of G in linear time using by a
clever use of DFS, known as Tarjan’s algorithm.

Suppose the underlying graph of G is connected but G is not strongly connected,
then there are strong components C1 and C2 such that it is possible to get from C1

to C2 but not from C2 to C1. If C1 and C2 are different strong components, then any
arcs between them must either all point from C1 to C2 or from C2 to C1.

This generalises to all strongly connected components (Figure 27.1). By reducing
each strongly connected component to a single node, we derive a new graph, H,
from G that is a DAG.

C1 C2 Cm

Figure 27.1: Decomposing a graph into its strongly connected components,
C1, . . . ,Cm. If each Ci is considered a single node, this decomposition is a DAG.

If we started a DFS in C1, we’d reach only nodes in C1 and no other nodes. If we
then started a DFS in C2, we’d see only those in C2 and so on. The question is, how
do we know to start in C1, the C2 etc.?

Since H is a DAG, we can find a topological order of it using the reverse order of
finishing times of a DFS. We note that the strong components of G are the same
as the strong components of its reverse, Gr . So, as before, starting a DFS in Cm of
Gr means we would only visit nodes in Cm and so on. This leads to the following
solution, due to Tarjan.

• Run a DFS on G starting at an arbitrary node and record the finishing (done)
times for each node.

• List nodes of G in reverse order of finishing (from last finished to first).
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• Run DFS on Gr , the reverse of G, always choosing a root (starting) node as
the unvisited node that occurs first on the list in the previous step.

• This produces a forest Fr where each tree in the forest is a strongly con-
nected component of G (and of Gr ).

The above algorithm runs in linear time with adjacency lists, since it only requires
two DFS traversals (which are each linear time), and the creation of the reverse
digraph which also takes linear time.

Example 27.1. Run the algorithm above on the graph shown (starting in the
initial DFS at node 0) to find all strongly connected components.

2

3

40

1

27.2 Bipartite graphs

Many graphs in applications have two different types of nodes, and no relations
between nodes of the same type (this is a model of sexually reproducing organ-
isms, for example).

Definition 27.2. A graph G is bipartite if V(G) can be partitioned into two nonempty
disjoint subsets V0 and V1 such that each edge of G has one endpoint in V0 and one
in V1.
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Example 27.3. This graph is bipartite. The isolated vertex could be placed on
either side.

There are exponentially many partitions of V into two subsets so we do not want
to have to test all possibilities to determine whether V is bipartite.

Definition 27.4. Let k be a positive integer. A graph G has a k-colouring if V(G)
can be partitioned into k nonempty disjoint subsets such that each edge of G joins
two vertices in different subsets.

Example 27.5. The graph in Example 27.3 has a 2-colouring as indicated.

Theorem 27.6. The following conditions on a graph G are equivalent.

1. G is bipartite.

2. G has a 2-colouring.

3. G does not contain an odd length cycle.

Example 27.7. Prove Theorem 27.6 by showing that statement 1 implies 2
implies 3 which implies 1. To show statement 3 implies 1, consider a BFS on
G where vertices at level i are given “colour” i mod 2.



Part VI

Weighted digraphs and
optimization problems



Lecture 28

Weighted graphs, single-source shortest paths
problem, Dijkstra

Weighted digraphs encode not only information about whether one can get from
A to B, but how much it will cost to do so. The weight could represent the cost of
using a link in a communication network, or distance between nodes in a trans-
portation network. We use the terms of cost and distance interchangeably.

28.1 Weighted digraphs

Definition 28.1. A weighted digraph is a pair (G, c) where G is a digraph and c is
a cost function associating a real number to each arc of G. For an arc (u, v), we
interpret c(u, v) as the cost of using (u, v).

An ordinary digraph can be thought of as a special type of weighted digraph where
the cost of each arc is 1.

Example 28.2. A classic unweighted graph (called the 3-cube), a digraph with
arc weights, and a graph with edge weights.

0
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6 7
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3 44
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Weighted digraphs can be represented using adjacency matrices or lists:

• The adjacency matrix is modified so that each entry of 1 (signifying that an
arc exists) is replaced by the cost of that arc.

• Care needs to be taken if using 0 to represent the absence of arcs, as 0 may
be a legal edge weight. In these cases, null, 1 or some suitable value may
be used. We use the convention that 0 or null represents the absence of
an arc.

• An adjacency list is modified so that the list associated with node v has each
adjacency node followed by the cost of the arc to the adjacent node.
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• For example, the list for node 6 with adjacent arcs (6, 2) with c(6, 2) = 4 and
(6, 7) with c(6, 7) = 5 would be 2, 4, 7, 5.

Example 28.3. Draw the weighted graph given by the weighted matrix below.

26666664

0 3 4 0
3 0 1 3
4 1 0 2
0 3 2 0

37777775

Draw the weighted digraph given by the weighted list representation below.

0 1 3 2 4
1 0 2 3 2
2 1 3
3 2 1

28.2 Distance and diameter

Recall that the distance d(u, v) between nodes u and v in an (unweighted) digraph
is simply the number of arcs in the shortest path between them.

In a weighted digraph, the distance to from node u to v, d(u, v), is the cost of the
minimum cost path from u to v where the cost of a path is just the sum of the costs
on that path.

• It is often helpful to have the distance matrix for a digraph. The (i, j)-entry
of this matrix contains the distance between node i and node j.

• For an unweighted digraph, the distance matrix can be generated by run-
ning BFSvisit from each node in turn, since the distance to a node is equal
to its depth in the BFS tree (or infinite if the node is not reachable from the
start node so not in the tree). This gives an algorithm with running time in
⇥(n2 + nm).

Example 28.4. A graph, its adjacency matrix and its distance matrix.

1 2

3 4

0

2666666664

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

3777777775

2666666664

0 1 1 2 3
1 0 2 1 2
1 2 0 1 2
2 1 1 0 1
3 2 2 1 0

3777777775
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Example 28.5. Give an example of a weighted digraph in which the BFS ap-
proach does not find the shortest path from the root to a node.

Definition 28.6. The diameter of a strongly connected digraph G is the maximum
of d(u, v) over all nodes u, v 2 V(G). If the digraph is not strongly connected the
diameter is undefined though can be set to1.

Clearly the diameter is just the maximum entry in the distance matrix.

Example 28.7. What is the diameter of the 3-cube in Example 28.2?

28.3 Single-source shortest path problem

Definition 28.8. In the single-source shortest path problem (SSSP) we are given
a weighted digraph (G, c) and a source node s. For each node v of G, we must find
the minimum weight of a path from s to v. By the weight of a path we mean the
sum of the weights on the arcs. This is like finding row s in a weighted distance
matrix.

Example 28.9. In the weighted digraph pictured, the unique shortest path
from 0 to 3 is 0, 1, 3 with weight 3. What is the path with minimum weight
from 2 to 0, and what is its weight?

0

2

1

3

5
22

1

24
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28.4 Dijkstra’s algorithm

Dijkstra’s algorithm solves the SSSP problem whenever all weights are non-
negative. It may fail in the presence of negative weight arcs.

It is easiest to understand the algorithm in terms of a set of visited nodes S, which
eventually includes all nodes in G. We’ll consider only shortest paths through S.
Once S = V(G), all shortest path lengths are known.

Initially S contains only the single node s. The only paths available are the one-
arc paths from s to neighbours v, of weight c(s, v). We choose the neighbour u with
c(s, u) minimal and add it to S.

Now the fringe nodes adjacent to s and u must be updated to reflect possible paths
through u (it is possible that there exists a path from s to v, passing through u, that
is shorter than the direct path from s). Now we choose the node whose current
best distance to s is smallest, and update again. We continue in this way until all
nodes belong to S. In Algorithm 28, the set S consists of the BLACK nodes.

Algorithm 28 Dijkstra’s algorithm, first version.
1: function DIJKSTRA(weighted digraph (G, c); node s 2 V(G))
2: array colour[0..n � 1], dist[0..n � 1]
3: for u 2 V(G) do
4: dist[u] c[s, u]; colour[u] WHITE
5: dist[s] 0; colour[s] BLACK
6: while there is a white node do
7: find a white node u so that dist[u] is minimum
8: colour[u] BLACK
9: for x 2 V(G) do

10: if colour[x] =WHITE then
11: dist[x] min{dist[x], dist[u] + c[u, x]}
12: return dist
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Example 28.10. An application of Dijkstra’s algorithm with starting vertex 0.
The distances to 0 at each step are displayed next to each node.
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Dijkstra’s algorithm is an example of a greedy algorithm. At each step it makes the
best choice involving only local information, and never regrets its past choices.

Example 28.11.

An application of Dijkstra’s algo-
rithm on the digraph below for
each starting vertex s. Complete
the table for the starting vertex 2.

0

2

1

3

5
22

1

24

The table illustrates that the dis-
tance vector is updated at most n�
1 times (only before a new vertex is
selected and added to S). Thus we
could have omitted the lines with
S = {0, 1, 2, 3}.

current S ✓ V distance vector dist
{0} 0, 1, 4,1
{0, 1} 0, 1, 4, 3
{0, 1, 3} 0, 1, 4, 3
{0, 1, 2, 3} 0, 1, 4, 3

{1} 1, 0,1, 2
{1, 3} 4, 0,1, 2
{0, 1, 3} 4, 0, 8, 2
{0, 1, 2, 3} 4, 0, 8, 2

{2}

{ }

{ }

{0, 1, 2, 3}

{3} 2,1,1, 0
{0, 3} 2, 3, 6, 0
{0, 1, 3} 2, 3, 6, 0
{0, 1, 2, 3} 2, 3, 6, 0
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Dijkstra proof and running time

Example 29.1. Give weights to the edges of the digraph below so that running
Dijkstra’s algorithm with starting vertex 0 fails.

0

2

1

Proving Dijkstra’s algorithm works is trickier than for other algorithms we’ve seen.

Define an S-path from s to w as a path from s to w with s and all intermediate
nodes belonging to S. In other words, w may not belong to S, but all other nodes
in the path do.

Theorem 29.2. Suppose that all arc weights are non-negative. Then at the top of
the while loop, we have the following properties:

P1: If x 2 V(G), then dist[x] is the minimum cost of an S-path from s to x.

P2: If w 2 S, then dist[w] is the minimum cost of a path from s to w.

At every step, dist[x] is the length of some path from s to x, or 1. That path is
an S-path if x 2 S. Also note that the update formula ensures that dist[x] never
increases.

To prove P1 and P2, we use induction on the number of times k we have been
through the while-loop. Let Sk denote the value of S at this stage.

Example 29.3. Show that P1 and P2 hold when k = 0.
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Example 29.4. Show that P1 holds for any value of k.

Example 29.5. Show that P2 holds for any value of k and that this proves the
correctness of Dijkstra’s algorithm.
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29.1 Running time of Dijkstra

The value of dist[x]will change only if x is adjacent to u. Thus if we use a weighted
adjacency list, the block inside the second for-loop need only be executed m times.
However, if using the adjacency matrix representation, the block inside the for-
loop must still be executed n2 times.

The time complexity is of order an + m if adjacency lists are used, and an + n2

with an adjacency matrix, where a represents the time taken to find the node with
minimum value of dist. The obvious method of finding the minimum is simply
to scan through array dist sequentially, so that a is of order n, and the running
time of Dijkstra is therefore ⇥(n2).
The next lecture looks at a more efficient implementation with running time O((m+
n) log n).
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Dijkstra and PFS, Bellman-Ford algorithm

30.1 PFS implementation of Dijkstra

• We can implement Dijkstra’s algorithm using priority-first search ideas.

• The key value associated to a node u is simply the value dist[u], the current
best distance to that node from the root s.

Algorithm 29 Dijkstra’s algorithm, PFS version.
1: function DIJKSTRA2(weighted digraph (G, c); node s 2 V(G))
2: priority queue Q
3: array colour[0..n � 1], dist[0..n � 1]
4: for u 2 V(G) do
5: colour[u] WHITE
6: colour[s] GREY
7: Q.insert(s, 0)
8: while not Q.isEmpty() do
9: t1  Q.getKeyQ.peek()

10: u Q.pop()
11: for each x adjacent to u do
12: t2  t1 + c(u, x)
13: if colour[x] =WHITE then
14: colour[x] GREY
15: Q.insert(x, t2)
16: else if colour[x] = GREY and Q.getKey(x) > t2 then
17: Q.decreaseKey(x, t2)
18: colour[u] BLACK
19: dist[u] t1
20: return dist

We can see that the dominant operations in terms of running time are

• n delete-min operations, and

• (at most) m decrease-key operations.

Hence using a binary heap, Dijkstra’s algorithm runs in time O((n +m) log n). Thus
if every node is reachable from the source, it runs in time O(m log n).
The best complexity bound for Dijkstra’s algorithm, using a Fibonacci heap, is
O(m + n log n).
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30.2 Bellman–Ford algorithm

The Bellman–Ford algorithm solves the SSSP problem even when there are neg-
ative weight arcs. It is not surprising that the algorithm thus runs more slowly
than Dijkstra’s algorithm.

• The basic idea, as with Dijkstra’s algorithm, is to solve the SSSP under re-
strictions that become progressively more relaxed.

• Bellman–Ford solves the problem for all nodes at “level” 0, 1, . . . , n�1 in turn.

• By level we mean the minimum possible number of arcs in a minimum
weight path to that node from the source.

Algorithm 30 Bellman–Ford algorithm.
1: function BELLMANFORD(weighted digraph (G, c); node s 2 V(G))
2: array dist[0..n � 1]
3: for u 2 V(G) do
4: dist[u] 1
5: dist[s] 0
6: for i from 0 to n � 1 do
7: for x 2 V(G) do
8: for v 2 V(G) do
9: dist[v] min(dist[v], dist[x] + c(x, v))

10: return dist

Example 30.1. An application of Bellman–Ford algorithm with starting node
4 when the nodes are processed in the order from 0 to 4.

1
3

1

1

1

12

3 0

2

1

0 3

�2

�2

1

3

1

12

3 0

2

1

3

�2

0
04 2

3

1

04

�2

0

3

3

12

3 0

2

1

3

�2

0

3

04

�2

2

3

12

3 0

2

1

3

�2

0

3

04
0

2

1

2

1

2

1

�2

2

2

12

3 0

2

1

3

�2

0

3

04
0

2

1



136 Lecture 30: Dijkstra and PFS, Bellman-Ford algorithm

Example 30.2. Execute the Bellman–Ford algorithm on the graph below with
starting vertex 0. Process nodes in the order from 0 to 5.
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Theorem 30.3. Suppose that G contains no negative weight cycles. Then after
the i-th iteration of the outer for-loop, dist[v] contains the minimum weight of a
path to v for all nodes v with level at most i.

Proof. Note that as for Dijkstra, the update formula is such that dist values never
increase.

We use induction on i. When i = 0 the result is true because of our initialization.
Suppose it is true for i � 1. Let v be a node at level i, and let � be a minimum
weight path from s to v. Since there are no negative weight cycles, � has i arcs.
If y is the last node of � before v, and �1 the subpath to y, then by the inductive
hypothesis we have dist[y]  |�1 |. Thus by the update formula we have dist[v] 
dist[y] + c(y, v)  |�1 | + c(y, v)  |� | as required. ⇤

The Bellman–Ford algorithm runs in time ⇥(nm) using adjacency lists, since the
statement in the inner for-loop need only be executed if v is adjacent to x, and the
outer loop runs n times. Using an adjacency matrix it runs in time ⇥(n3).

Example 30.4. Explain why the SSSP problem makes no sense if we allow
digraphs with cycles of negative total weight.
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Example 30.5. Suppose the input to the Bellman–Ford algorithm is a digraph
with a negative weight cycle. How could the algorithm detect this, so it can
exit gracefully with an error message?
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All-pairs shortest path problem

Definition 31.1. In the all-pairs shortest path problem (APSP) we are given a
weighted digraph (G, c), and must determine for each u, v 2 V(G) the weight of a
minimum weight path from u to v.

The solution to the all-pairs shortest path problem can be presented as a distance
matrix.

Example 31.2. For the digraph we have already calculated the all-pairs
distance matrix in Example 28.11:

0
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22

1

24 ©≠≠≠
´

0 1 4 3
4 0 8 2
6 2 0 4
2 3 6 0

™ÆÆÆ
¨

The APSP problem can be solved by solving the SSSP problem from each node.

• If all weights were non-negative, we could run Dijsktra from each of the n
nodes, to get a running time of ⇥(n3).

• To be robust to negative weights, using Bellman–Ford gives a ⇥(n2m) solu-
tion to APSP.

Floyd’s algorithm computes a distance matrix from a cost matrix (so solves APSP)
in time ⇥(n3).

• The basic idea is that we find the length of the shortest path between nodes
u and v that uses only a fixed set of intermediate nodes.

• This set of intermediate nodes starts at as the empty set (so only arcs from u
to v are allowed) and grows, one node at a time, until it includes all nodes at
which point the algorithm is complete.

• It is essentially just a triple for-loop so easy to programme.

• Floyd’s algorithm is thus faster than Bellman–Ford for non-sparse digraphs.

• It is robust to negative weights.
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We see how this works in Algorithm 31 where the outer-for loop iterates through
all nodes, essentially adding them to the intermediate set, while the inner two
loops cycle through all pairs seeing if a shorter path can be found through the
new intermediate node.

Algorithm 31 Floyd’s algorithm.
1: function FLOYD(weighted digraph (G, c))
2: array d[0..n � 1, 0..n � 1] . initialise distance matrix
3: d  c . distance matrix starts as copy of weight matrix
4: for x 2 V(G) do . taking one vertex at a time
5: for u 2 V(G) do
6: for v 2 V(G) do
7: d[u, v] min(d[u, v], d[u, x] + d[x, v])

. update distance by looking for a shorter path through x
8: return d

Example 31.3. An application of Floyd’s algorithm on the graph on the left is
given below. The initial cost matrix is as follows.

0 14

2 3

4 5

1 2

13

3 44

2

266666666664

0 4 1 1 4 1
4 0 1 2 3 4
1 1 0 1 3 1
1 2 1 0 1 1
4 3 3 1 0 2
1 4 1 1 2 0

377777777775
In the matrices below, we list the entries that change in bold after each itera-
tion of the outer for-loop, that is, after x has been 0, 1, and so on.

266666666664

0 4 1 1 4 1
4 0 5 2 3 4
1 5 0 1 3 1
1 2 1 0 1 1
4 3 3 1 0 2
1 4 1 1 2 0

377777777775

266666666664

0 4 1 6 4 8
4 0 5 2 3 4
1 5 0 7 3 9
6 2 7 0 5 1
4 3 3 5 0 2
8 4 9 1 2 0

377777777775

266666666664

0 4 1 6 4 8
4 0 5 2 3 4
1 5 0 7 3 9
6 2 7 0 5 1
4 3 3 5 0 2
8 4 9 1 2 0

377777777775
x = 0 x = 1 x = 2

266666666664

0 4 1 6 4 7
4 0 5 2 3 3
1 5 0 7 3 8
6 2 7 0 5 1
4 3 3 5 0 2
7 3 8 1 2 0

377777777775

266666666664

0 4 1 6 4 6
4 0 5 2 3 3
1 5 0 7 3 5
6 2 7 0 5 1
4 3 3 5 0 2
6 3 5 1 2 0

377777777775

266666666664

0 4 1 6 4 6
4 0 5 2 3 3
1 5 0 6 3 5
6 2 6 0 3 1
4 3 3 3 0 2
6 3 5 1 2 0

377777777775
x = 3 x = 4 x = 5



140 Lecture 31: All-pairs shortest path problem

Example 31.4. Give the cost matrix for the graph on the left.

0 1

2 3

41

13

22

4

5

Execute Floyd’s algorithm on the graph above by giving the matrices after
each iteration of the outer for-loop.
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31.1 Proof of Floyd’s algorithm

Theorem 31.5. At the bottom of the outer for loop, for all nodes u and v, d[u, v]
contains the minimum length of all paths from u to v that are restricted to using
only intermediate nodes that have been seen in the outer for loop.

Proof. To establish the above property, we use induction on the outer for-loop.
Let Sk be the set of nodes seen after k times through the outer loop, and define an
Sk-path to be one all of whose intermediate nodes belong to Sk . The correspond-
ing value of d is denoted dk . We need to show that for all k, after k times through
the outer for-loop, dk[u, v] is the minimum length of an Sk-path from u to v.

When k = 0, S0 = ; and the result holds. Suppose it is true after k times through
the outer loop and consider what happens at the end of the (k+1)-st time through
the outer loop. Suppose that x was the last node seen in the outer loop, so Sk+1 =
Sk [ {x}. Fix u, v 2 V(G) and let L be the minimum length of an Sk+1-path from u to
v. Obviously L  dk+1[u, v]; we show that dk+1[u, v]  L.

Choose an Sk+1-path � from u to v of length L. If x is not involved then the result
follows by inductive hypothesis. If x is involved, let �1, �2 be the subpaths from
u to x and x to v respectively. Then �1 and �2 are Sk-paths and by the inductive
hypothesis,

L � |�1 | + |�2 | = dk[u, x] + dk[x, v] � dk+1[u, v].
⇤

Example 31.6. Draw a table to compare and summarise how BFS, Djikstra,
Bellman-Ford and Floyd can be used to solve the SSSP and APSP problems
for weighted and unweighted graphs and digraphs with or without negative
arcs. Compare their running times and their ability to detect negative cycles.
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Minimum spanning tree problem

Definition 32.1. A spanning tree of a graph G is a subgraph of G that spans G
(contains all nodes of G) and is a tree (a connected, acyclic graph).

Let G be a weighted graph. A minimum spanning tree (MST) is a spanning tree
for G which has minimum total weight (sum of all edge weights).

In the minimum spanning tree problem we have to find a weighted graph G is to
find a MST for G.

We can assume throughout that G is connected.

Example 32.2. In the graph below, the tree determined by the edges

{0, 2}, {1, 3}, {3, 5}, {4, 5}, {2, 4}

has total weight 9. It is a tree and has the 5 smallest weight edges, so must be
a MST.
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We look at two simple greedy algorithms that solve the MST problem.

32.1 Prim’s algorithm

The basic idea of Prim’s algorithm is simple:

• Start at any vertex.

• Choose at each step an edge of minimum weight from the remaining edges
ensuring that

1. adding the edge does not create a cycle in the subgraph built so far; and

2. the subgraph built so far is connected.

• Stop when the tree is a spanning tree.
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Since the subgraph built is acyclic and connected at each stage, it is a tree. It is
also clear that the algorithm halts and as the tree grows by a node at each stage, it
will eventually include all nodes of G, that is, be a spanning tree. So the only thing
that needs to be proved for correctness is that the tree has the lowest possible
weight (is minimum). We will prove this but first look at the code.

Pseudocode is given in Algorithm 32. Note how similar Prim’s algorithm is to Di-
jkstra’s algorithm. The main difference is in the update formula. We also store the
PFS tree, which we did not do for Dijkstra.

Algorithm 32 Prim’s algorithm.
1: function PRIM(weighted graph (G, c); vertex s 2 V(G))
2: priority queue Q
3: array colour[0..n � 1], pred[0..n � 1]
4: for u 2 V(G) do
5: colour[u] WHITE; pred[u] null

6: colour[s] GREY
7: Q.insert(s, 0)
8: while not Q.isEmpty() do
9: u Q.peek()

10: for each x adjacent to u do
11: t  c(u, x)
12: if colour[x] =WHITE then
13: colour[x] GREY; pred[x] u
14: Q.insert(x, t)
15: else if colour[x] = GREY and Q.getKey(x) > t then
16: Q.decreaseKey(x, t); pred[x] u
17: Q.delete()
18: colour[u] BLACK
19: return pred
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Example 32.3. Application of Prim’s algorithm on a graph, choosing node
with lowest index where there is a choice.
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Example 32.4. Execute Prim’s algorithm.
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Example 32.5. Prove that Prim’s algorithm is correct.

Running time

The complexity of the algorithm depends to a great extent on the data structure
used. The best known for Prim is the same as for Dijkstra and we get a running
time in O(m + n log n).
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32.2 Kruskal’s algorithm

Kruskal’s algorithm is even simpler than Prim’s to state.

• Start with an empty set of edges.

• At each step choose an edge of minimum weight from the remaining edges
ensuring that adding the edge does not create a cycle in the subgraph built
so far.

• Stop when the subgraph is spanning tree.

Kruskal’s algorithm maintains acyclicity, so it has a forest at each step, and the
different trees merge as the algorithm progresses.

Algorithm 33 Kruskal’s algorithm.
1: function KRUSKAL(weighted digraph (G, c))
2: disjoint sets ADT A
3: initialize A with each vertex in its own set
4: sort the edges in increasing order of cost
5: for each edge {u, v} in increasing cost order do
6: if not A.set(u) = A.set(v) then
7: add this edge
8: A.union(A.set(u), A.set(v))
9: return A

Example 32.6. Application of Kruskal’s algorithm on a graph shown until an
MST is found. Note that the edge {0, 2} with weight 2 is not added, because 0
and 2 are already in the same set in A.
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Example 32.7. Execute Kruskal’s algorithm by adding or crossing out the
next edge. Stop when you reached an MST.
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Observe that if we try to add an edge both of whose endpoints are in the same tree
in the Kruskal forest, this will create a cycle, so the edge must be rejected. On the
other hand, if the endpoints are in two different trees, a cycle definitely will not be
created; rather, the two trees merge into a single one, and we should accept the
edge.

We need a data structure that can handle this efficiently. All we need is to be able
to find the tree containing an endpoint, and to merge two trees. The disjoint sets
or union-find ADT is precisely what is needed. It allows us to perform the find

and union operations efficiently. We do not look at the details of this ADT here.

Kruskal’s is in O(m log n) using the disjoint sets ADT. The ADT can be implemented
in such a way that the union and find operations in Kruskal’s algorithm runs in
almost linear time. So if the edge weights are presorted, or can be sorted in linear
time (for example, if they are known to be integers in a fixed range), then Kruskal’s
algorithm runs for practical purposes in linear time.
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Hard graph problems

All of the problems we have considered so far have solutions whose running time
is bounded above by a low degree polynomial in the size of the input. However,
there are many essential problems that currently do not have known polynomial-
time algorithms (so-called NP-hard problems). Some examples are:

• finding the longest path between two nodes of a digraph;

• finding a k-colouring of a graph, for fixed k � 3;

• finding a cycle that passes through all the vertices of a graph (a Hamiltonian
cycle);

• finding a minimum weight path that passes through all the vertices of a
weighted digraph (the travelling salesperson problem or TSP);

• finding the largest independent set in a graph, that is, a subset of vertices no
two of which are connected by an edge;

• finding the smallest vertex cover of a graph, that is, a special subset of ver-
tices so that each vertex of the graph is adjacent to one in that subset.

Investigating these problems is an active research area in computer science. In
many cases the only approach known to the general problem is to try all possi-
bilities, with some rules that prevent the listing of obviously hopeless ones. In
some special cases (for example, if a graph is bipartite, the vertex cover problem
is solvable in polynomial time) or where the graph is in some sense “close to” a
tree, much faster algorithms can be developed.


