GBFHS: A generalized breadth-first heuristic search algorithm

> Artificial Intelligence Sam Chen

Introduction

AI Navigation System

Path Problems

Bidirectional Heuristic Algorithm

MM, MMe, NBS

What is GBFHS?

Distinguish from associated topics

Objective & The General Problem

"Hump-In-The-Middle Phenomenon"[1] "III-Behaved & Well-Behaved"[1]

The GBFHS Algorithm

Algorithm 1 GBFHS(I,G, ϵ , *split*) \rightarrow optimalSolutionCost

- 1: if trivially solved then
- 2: return(0)
- 3: best \leftarrow unsolvable
- 4: $open_F \leftarrow \{(\mathbf{I}, \mathbf{0})\}, open_B \leftarrow \{(\mathbf{G}, \mathbf{0})\}$
- 5: $closed_F \leftarrow closed_B \leftarrow \emptyset$
- 6: for fLim from $max(h_F(I), h_B(G), \epsilon)$ up by 1 until $open_F = \emptyset \lor open_B = \emptyset$ do
- 7: **if** best = fLim **then**
- 8: return(best)
- 9: $gLSum \leftarrow fLim \epsilon + 1$
- 10: $gLim_F, gLim_B \leftarrow \text{split}(gLSum, gLim_F, gLim_B)$
- 11: expandLevel($gLim_F$, $gLim_B$, fLim)
- 12: **if** best = fLim **then**
- 13: return(best)
- 14: return(best)

Figure2: Pseudo-code of GBFHS Source: Adapted from [1] Algorithm 2 expandLevel($gLim_F$, $gLim_B$, fLim) 1: $expandable_F \leftarrow \{n \mid n \in open_F \land isExpandable(n,F)\}$ 2: $expandable_B \leftarrow \{n \mid n \in open_B \land isExpandable(n,B)\}$ 3: while $expandable_F \neq \emptyset \land expandable_B \neq \emptyset$ do $n \leftarrow pick(expandable_F \cup expandable_B)$ 4: $dir \leftarrow direction(n)$ 5: $expandable_{dir} \leftarrow expandable_{dir} \smallsetminus \{n\}$ 6: $move(n, open_{dir}, closed_{dir})$ 7: for all $c \in expand(n, dir)$ do 8: $\text{if } c \in open_{dir} \cup closed_{dir} \wedge g_{dir}(n) + cost(n,c) \geq \\$ 9: $q_{dir}(c)$ then continue 10: if $c \in open_{dir} \cup closed_{dir}$ then 11: $remove(c, open_{dir} \cup closed_{dir})$ 12: 13: $g_{dir}(c) \leftarrow g_{dir}(n) + cost_{dir}(n,c)$ add(c, open_dir) 14: if isExpandable(c, dir) then 15: $add(c, expandable_{dir})$ 16: if $c \in open_{opp(dir)}$ then 17: $best \leftarrow min(best, g_{dir}(c) + g_{opp(dir)}(c))$ 18: 19: if $best \leq fLim$ then 20: return 21: return

Figure3: Pseudo-code of expandLevel Source: Adapted from [1]

Experiments

Figure 4: Average number of nodes expanded for A*, MM, MMe, and GBFHS on 50 random 10-pancake problems as the heuristic accuracy degrades Source: Adapted from [1]

Analysis 1: GBFHS vs A*

Figure 5: Average Nodes Expanded for A8 and GBFHS on 50 Random 10-pancake problems as the heuristic accuracy degrades

Source: Adapted from [1]

Analysis 2: GBFHS vs MM/MMe

Figure 6: Actuals, Lower and Upper Bounds for MM, MMe, and GBFHS on 50 random 10-pancake problems as the heuristic degrades

Source: Adapted from [1]

Anal	ysi	s 3	•
GBF	HS	VS	NBS

domain	heuristic	GBFHS	A *	BS*	MMe	NBS
16 pancake	GAP	279	125	339	283	335
16 pancake	GAP-2	250,941	1,254,082	947,545	587,283	625,900
16 pancake	GAP-3	2,140,718	unsolvable	29,040,138	7,100,998	6,682,497
15 puzzle	MD	12,507,393	15,549,689	12,001,024	13,162,312	12,851,889

Table 1: Comparison between NBS, A*, GBFHS, MMe, and BS* Source: Adapted from [1]

Pros of GBFHS

Good Flexibility

Stop on First Collision and guaranteed optimal solution

Better than NBS,MM, MMe and A* (when running unidirectionally)

Well-Behaved

Future Steps

Automatically determine the value for the minimum action cost of the domain

Automatically determine a good split and use it.

Deep investigation on arbitrary-cost domains

Reference

[1] Barley, M., Riddle, P., Linares López C, Dobson, S., & Pohl, I. (2018). GBFHS: A Generalized Breadth-First Heuristic Search Algorithm. Presented at The Eleventh Annual Symposium on Combinatorial Search, Stockholm, Sweden. 14 July - 15 July 2018. Proceedings of the Eleventh Annual Symposium on Combinatorial Search (SOCS 2018). (pp.

9).[Online].Avaiable:https://researchspace.auckland.ac.nz/handle/2292/45475>

[2] Shahaf S. Shperberg, Ariel Felner. (2020). On the Differences and Similarities of fMM and GBFHS. Presented at The Thirteenth International Symposium on Combinatorial Search (SoCS 2020). [Online]. Avaiable: https://www.semanticscholar.org/paper/On-the-Differences-and-Similarities-of-fMM-and-Shperberg-Felner/b63ed5131f89010199f217eb7239d256c2b31bf0#paper-header.