

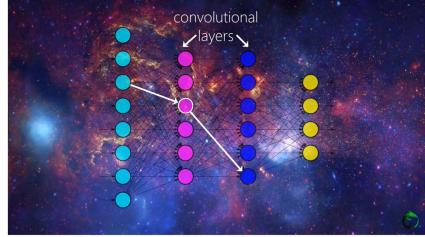
RETHINKING THE INCEPTION ARCHITECTURE FOR COMPUTER VISION

By C. Szegedy, V. Vanhoucke, S. loffe, J. Shlens and Z. Wojna

PRESENTATION BY EMILY DA

CONVOLUTION NETWORKS

- Filters that detect patterns
- Convolutional layers
- Deeper layers can detect more specific objects like hair, eyes etc, even deeper = full objects like animals, etc
- Need to specify amount of filters
- Image recognition
- Convolution layers : Inputs information, transforms it and outputs



BACKGROUND

- Convolution networks started to become mainstream in 2014- significantly improved
- Success of "AlexNet", winning entry of an ImageNet competition has helped a large amount of computer vision tasks including:
 -object detection, segmentation, human pose estimation, video classification, object tracking, and superresolution
- The success inspired new research for Convolutional Neural Networks (CNN)
- How do we scale up networks, utilize computation as efficiently as possible?

COMPARISONS

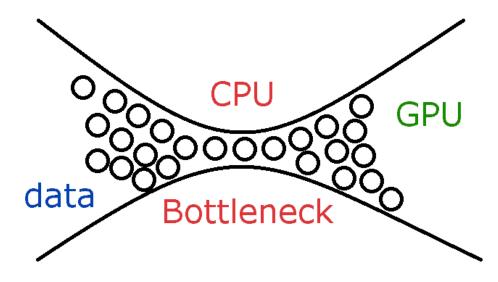
- AlexNet (2012), GooGleNet, VGGNet (2014) all had high performance results
- + classification performance = significant quality gains
- VGGNet has a strong feature of architectural simplicity but the downside is that evaluating the network requires a lot of computation.
- Inception architecture of GooGleNet performed well even with limited memory and a computation limit

INCEPTION ARCHITECTURE

- Computation cost of inception is much lower than VGGNet
- Makes it attractive to use in a big data scenario
- Complex and difficult to make changes
- Double filter bank sizes = 4x computational cost and parameter number
- Goal? We want to find efficient ways to scale up convolution networks
- What are the general principles and optimization ideas? \rightarrow To find out

GOAL

- Increase depth by stacking more convolution layers mean the network can learn more complex features
- Cons to it though..
- Scaling could help it learn more defined features
- We want to find efficient ways to scale up the convolution layers

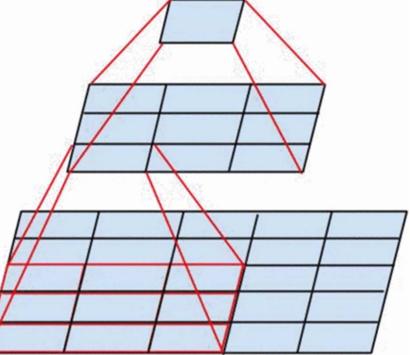


GENERAL DESIGN PRINCIPLES

- 1. Avoid Representational Bottlenecks
- 2. Higher dimensional representations
- 3. Spatial Aggregation
- 4. Balance the Width and Depth of the network

FACTORISING

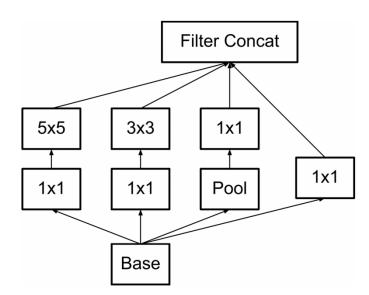
-Increase computational efficiency-Potentially result in faster training-Could have more disentagledparameters

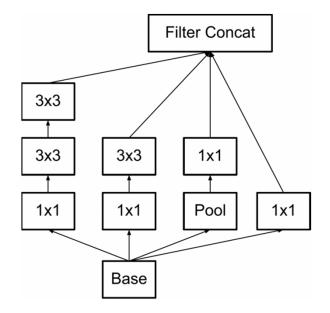


FACTORIZING INTO SMALLER CONVOLUTIONS

- Larger special filters much more expensive. E.g. 5x5 convolution is 2.78 times more expensive than a 3x3
- What about 2 layers of 3x3?
- 18/25x reduction = computational savings + 28% relative gain with that factorization

EXAMPLE OF 2 LAYER CONVOLUTION

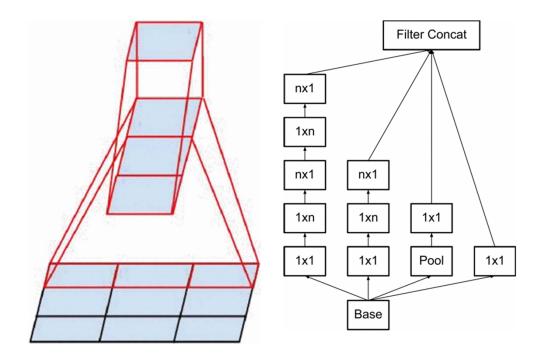




S P A C I A L F A C T O R I Z A T I O N I N T O A S Y M M E T R I C C O N V O L U T I O N S

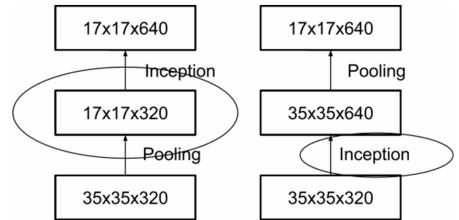
- -Can always be reduced to 3x3
- -2x2? nx1?

• n x1 is very good for medium sized grids.



HOW DO WE REDUCE GRID SIZE EFFICIENTLY?

- Option 1: Use pooling and avoid bottleneck- activation dimensions of the network filters are expanded.
- For d/2 grid size and 2k filter, computational cost is expensive
- Option 2: Pooling with convolution.
- Reduces computational cost by ¼ but creates a bottleneck



MORE EFFICIENT OPTION?

- New architecture proposal- Inception V3
- 3 traditional inception modules : 35 x 35 with 288 filters become 17x 17 with 768 filters
- 5 instances of factorization- reduces to 8x8x1280 grid
- Results in network 42 layers deep, 2.5x more computation cost than GooGleNet but much more efficient, quality stable

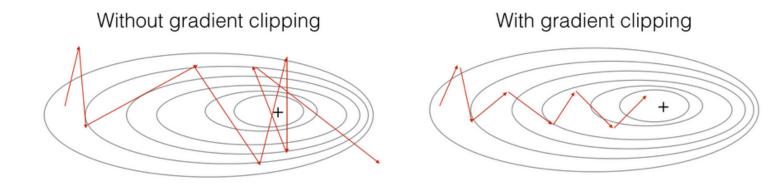
type	patch size/stride or remarks	input size
conv	$3 \times 3/2$	$299{\times}299{\times}3$
conv	$3 \times 3/1$	$149 \times 149 \times 32$
conv padded	$3 \times 3/1$	$147 \times 147 \times 32$
pool	$3 \times 3/2$	$147 \times 147 \times 64$
conv	$3 \times 3/1$	$73 \times 73 \times 64$
conv	$3 \times 3/2$	$71 \times 71 \times 80$
conv	$3 \times 3/1$	$35 \times 35 \times 192$
3×Inception	As in figure 5	$35 \times 35 \times 288$
5×Inception	As in figure 6	$17 \times 17 \times 768$
$2 \times$ Inception	As in figure 7	$8 \times 8 \times 1280$
pool	8 imes 8	$8 \times 8 \times 2048$
linear	logits	1 imes 1 imes 2048
softmax	classifier	1 imes 1 imes 1000

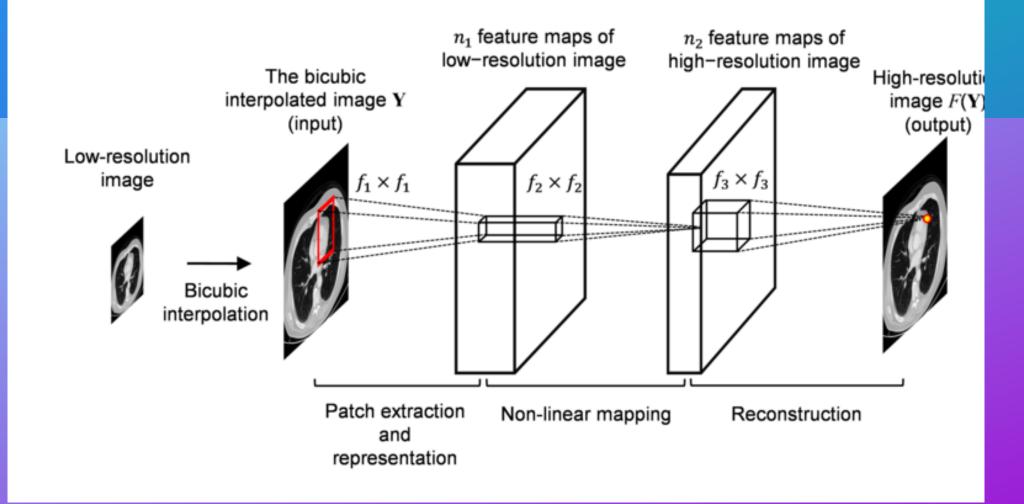
AUXILIARY CLASSIFERS

- Auxiliary classifiers to improve the convergence of very deep networks
- Original plan was to move useful gradients to lower layers so it can be used immediately
- Lee et al (a researcher) claims auxiliary classifies improve learning

TRAINING OUTCOME

- Gradient clipping found useful
- RMSProp an algorithm had the best outcome
- Evaluated using running average computed over time





PROS AND CONS

- Accuracy
- Size and Feature
- Training difficulty
- Computational Cost
- Efficiency

FINDINGS

Network	Top-1	Top-5	Cost
Network	Error	Error	Bn Ops
GoogLeNet [20]	29%	9.2%	1.5
BN-GoogLeNet	26.8%	-	1.5
BN-Inception [7]	25.2%	7.8	2.0
Inception-v3-basic	23.4%	-	3.8
Inception-v3-rmsprop			
RMSProp	23.1%	6.3	3.8
Inception-v3-smooth			
Label Smoothing	22.8%	6.1	3.8
Inception-v3-fact			
Factorized 7×7	21.6%	5.8	4.8
Inception-v3	21.2%	5.6%	4.8
BN-auxiliary	21.270	5.0%	4.0

Receptive Field Size	Top-1 Accuracy (single frame)
79 imes 79	75.2%
151×151	76.4%
299 imes 299	76.6%

 When computational cost is constant but the receptive field varies- recognition performance

Compared with the best outcome of GoogLeNet

RELATED WORKS

- Simonyan and Zisserman used deep CNN like Inception. They kept the parameters constant and small sized convolutional filters
- Winner of ILSVRC 2015: They used a residual learning framework
- A new family of CNN: EfficientNet, paper published in 2019

SUMMARY

- Modest computation cost 2.5x increase
- Less computation compared to some other networks
- Scale up convolutional networks
- Lower parameter count

REFERENCE

- C. Szegedy, V. Vanhoucke, S.Ioffe, J.Shlens, and Z.Wojna, "Rethinking the Inception Architecture for Computer Vision", Las Vegas, NV, USA. Published in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Available: <u>https://ieeexplore-ieee-</u> <u>org.ezproxy.auckland.ac.nz/document/7780677</u>
- Hashemi, M. "Enlarging smaller images before inputting into convolutional neural network: zero-padding vs. interpolation." *J Big Data* 6, 98 (2019). Available: <u>https://doi.org/10.1186/s40537-019-0263-7</u>
- C. Szegedy, W.Liu, Y.Jia, P.Sermanet, S. Reed, D. Anguelov, D.Erhan, V.Vanhoucke, A.Rabinovich, "Going Deeper with Convolutions", University of North Carolina, USA, University of Michigan, USA. Published in 2015 Computer Vision Foundation. Available:

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43022.pdf