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What is Diabetic Retinopathy
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Diabetic Retinopathy
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“Occurs in 28.5% of people

with diabetes in the USA” A2 ‘. e
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Retinal Fundus Photographs

* Photograph of the eye 3]
* Used to help detect Diabetic Retinopathy

 Researchers Goal?




What is the benefit of an automated
detection system

* Manual Interpretation is standard
* Increasing Efficiency

* Reproducibility

e Reducing Barriers to access

* Improving patient outcomes



Machine Learning

* Algorithm for automatic detection is needed

* Machine Learning has been used for classification tasks including
diabetic retinopathy

* Previous work has focused on ‘feature engineering’
* Deep learning avoids ‘feature engineering’



Neural Networks

[4]

4,
»«/‘A 24
(‘\ A \)¢7 /0\

-
=5

S N

XS
s

N

X 2%

Al

2D

s
eJoJoX
NGB

SNe
@,
2

N/

 /
A"

»

A

{/
-,
Ve

N\

>

&
S

N/

XX
.;‘

Y A

*
[/

XS

2
-

4\

AN
O O
%

Nl
Bctas

)

(X
) \"0‘(

N

/N

)
4

d
Q

\




Convolution Neural Networks

* Good for Image Recognition
* Layers Called Convolutional Layers
* Detects Features of Images
[5]
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Back-propagation

* How does the network learn?
* Compares expected output with actual output
* Makes adjustments to weights and biases [6]

* Minimises the cost function Backpropagation




Data sets

* Trained on 128,175 Retinal Images
* Validated using 2 data sets

* No overlap in the sets
 Diabetic Retinopathy severity was graded into 5 categories



Development of the Algorithm

* Determines diabetic retinopathy severity using the intensities of the
pixels

* Parameters are set to random values

* The severity grade is compared to actual grade

* Repeated many times on the data set

* The network was trained to make multiple binary predictions



Evaluation of Algorithm

* Network produced continuous number between 0 and 1 for referable
diabetic retinopathy and other classifications

* Specificity and Sensitivity
* Two operating points for the algorithm were selected



Results

* EyePACS-1 validation data set consisted of 9963 images
* Messidor-2 validation data set consisted of 1748 images

* Mean agreement of ophthalmologists on referable diabetic
retinopathy images 77.7% and 82.4%

* Mean agreement on non-referable images was 97.4% and 96.3%
* Sensitivity analysis was conducted for several subcategories



Results Cont.

* Sensitivity and specificity at high specificity point 90.3% and 98.1% for
first data set

* Sensitivity and specificity at high specificity point 87.0% and 98.5% for
second data set

* Sensitivity and specificity at high sensitivity point 97.5% and 93.4% for
first data set

* Sensitivity and specificity at high sensitivity point 96.1% and 93.9% for
second data set



Results Cont.

* Multiple other networks were trained
e Effect of data set size on performance plateaued at 60 000 images

* Increasing number of grades did not increase performance
* One grade per image on tuning set lead to 36% decrease



Discussion

* Deep neural networks can be trained using large data sets without
specifying features for diabetic retinopathy

* Automated system for detection of diabetic retinopathy provides
multiple advantages

* Abramof et al’ achieved a sensitivity of 96.8% and specificity of 59.4%
* Solanki et al® achieved a sensitivity of 93.8% and specificity of 72.2%
* Philip et al® achieved a sensitivity of 82.6% and a specificity of 76.8%



Discussion cont.

* High sensitivity and specificity is essential

* Researchers determined future medical using deep learning has 2
prerequisites

* There a limitations to the algorithm

* We don’t know what features the algorithm is using to detect diabetic
retinopathy

e Algorithm is not a replacement for an eye examination



What’s Next....

* Further validation of the algorithm with different with different
graders

e Further research is needed to determine possibility of applying this
algorithm to a clinical setting

* Machine learning in ophthalmology!”!
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