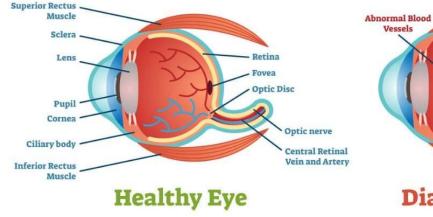
Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs

V. Gulshan, L. Peng, M. Coram, et al.

Presentation by Aidan Fitzgerald

What is Diabetic Retinopathy

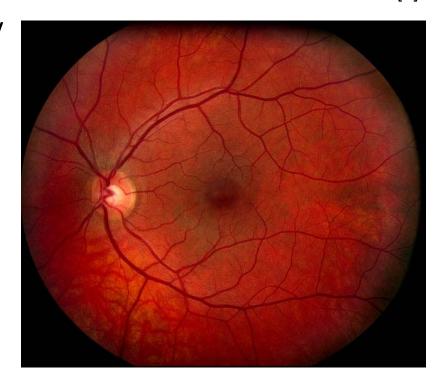
[2]


Hemorrhages

"Cotton Wool"

Aneurysm

Diabetic Retinopathy

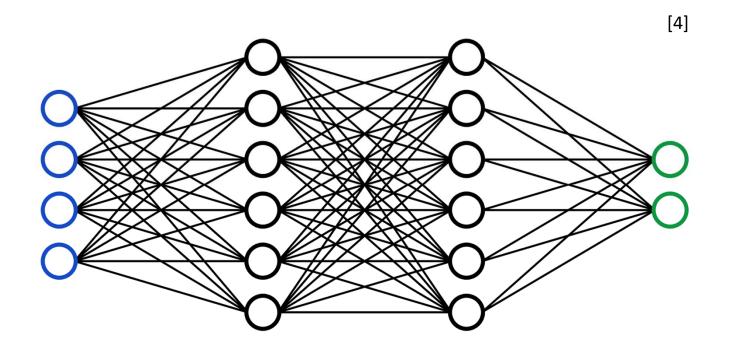

"Occurs in 28.5% of people with diabetes in the USA"

Diabetic Eye

Retinal Fundus Photographs

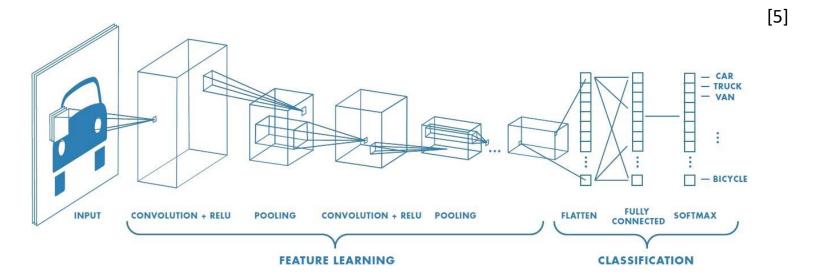
- Photograph of the eye
- Used to help detect Diabetic Retinopathy
- Researchers Goal?

[3]

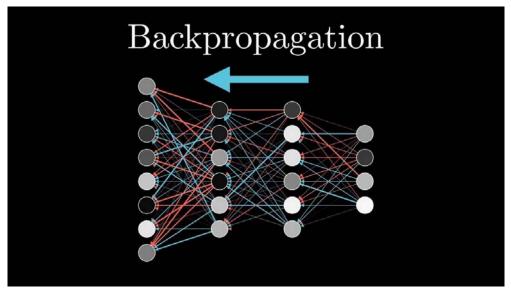

What is the benefit of an automated detection system

- Manual Interpretation is standard
- Increasing Efficiency
- Reproducibility
- Reducing Barriers to access
- Improving patient outcomes

Machine Learning


- Algorithm for automatic detection is needed
- Machine Learning has been used for classification tasks including diabetic retinopathy
- Previous work has focused on 'feature engineering'
- Deep learning avoids 'feature engineering'

Neural Networks


Convolution Neural Networks

- Good for Image Recognition
- Layers Called Convolutional Layers
- Detects Features of Images

Back-propagation

- How does the network learn?
- Compares expected output with actual output
- Makes adjustments to weights and biases
- Minimises the cost function

[6]

Data sets

- Trained on 128,175 Retinal Images
- Validated using 2 data sets
- No overlap in the sets
- Diabetic Retinopathy severity was graded into 5 categories

Development of the Algorithm

- Determines diabetic retinopathy severity using the intensities of the pixels
- Parameters are set to random values
- The severity grade is compared to actual grade
- Repeated many times on the data set
- The network was trained to make multiple binary predictions

Evaluation of Algorithm

- Network produced continuous number between 0 and 1 for referable diabetic retinopathy and other classifications
- Specificity and Sensitivity
- Two operating points for the algorithm were selected

Results

- EyePACS-1 validation data set consisted of 9963 images
- Messidor-2 validation data set consisted of 1748 images
- Mean agreement of ophthalmologists on referable diabetic retinopathy images 77.7% and 82.4%
- Mean agreement on non-referable images was 97.4% and 96.3%
- Sensitivity analysis was conducted for several subcategories

Results Cont.

- Sensitivity and specificity at high specificity point 90.3% and 98.1% for first data set
- Sensitivity and specificity at high specificity point 87.0% and 98.5% for second data set
- Sensitivity and specificity at high sensitivity point 97.5% and 93.4% for first data set
- Sensitivity and specificity at high sensitivity point 96.1% and 93.9% for second data set

Results Cont.

- Multiple other networks were trained
- Effect of data set size on performance plateaued at 60 000 images
- Increasing number of grades did not increase performance
- One grade per image on tuning set lead to 36% decrease

Discussion

- Deep neural networks can be trained using large data sets without specifying features for diabetic retinopathy
- Automated system for detection of diabetic retinopathy provides multiple advantages
- Abramof et al⁷ achieved a sensitivity of 96.8% and specificity of 59.4%
- Solanki et al⁸ achieved a sensitivity of 93.8% and specificity of 72.2%
- Philip et al⁹ achieved a sensitivity of 82.6% and a specificity of 76.8%

Discussion cont.

- High sensitivity and specificity is essential
- Researchers determined future medical using deep learning has 2 prerequisites
- There a limitations to the algorithm
- We don't know what features the algorithm is using to detect diabetic retinopathy
- Algorithm is not a replacement for an eye examination

What's Next....

- Further validation of the algorithm with different with different graders
- Further research is needed to determine possibility of applying this algorithm to a clinical setting
- Machine learning in ophthalmology^[7]

References

- V. Gulshan, L. Peng, M. Coram, et al., "Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs," *JAMA*, vol. 316, no. 22, pp. 2402-2410, Dec. 2016, doi: 10.1001/jama.2016.17216.
- [2] Sonas. "Diabetic Retinopathy." Sonas Home Health Care. https://www.sonashomehealth.com/diabetic-retinopathy/ (accessed Aug. 21, 2020).
- [3] University of Iowa. "Color Fundus Photography." University of Iowa Health Care. https://medicine.uiowa. edu/eye/patient-care/imaging-services/color-fundus-photography (accessed Aug. 21, 2020).
- [4] V. Zhou. "Neural Networks From Scratch." victorzhou.com. https://victorzhou.com/series/neural-networks-from-scratch/ (accessed Aug. 21, 2020).
- [5] S. Saha. "A Comprehensive Guide to Convolutional Neural Networks the ELI5 way." Towards Data Science. https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53 (accessed Aug. 21, 2020).
- [6] 3Blue1Brown. What is Backpropagation really doing? | Deep learning, chapter 3. (Nov. 3, 2017). Accessed: Aug. 21, 2020. [Online Video]. Available: https://www.youtube.com/watch?v=llg3gGewQ5U
- [7] M. D. Abràmoff, J. C. Folk, D. P. Han, et al., "Automated Analysis of Retinal Images for Detection of Referable Diabetic Retinopathy," *JAMA Ophthalmol*, vol. 131, no. 3, pp. 351–357, Mar. 2013, doi:10.1001/jamaophthalmol.2013.1743
- [8] K. Solanki, C. Ramachandra, S. Bhat, et al., "Automated, High-throughput, Image Analysis for Diabetic Retinopathy Screening." *IVOS*, vol. 56, no. 7, Jun. 2015.
- [9] S. Philip, A. D. Fleming, K. A. Goatman, et al., "The efficacy of automated "disease/no disease" grading for diabetic retinopathy in a systematic screening programme," *Br J Ophthalmol*, vol. 91, no. 11, pp. 1512-1517, May. 2007.