OPTIMISING TCP BUFFERS FOR SATELLITE COMMUNICATION LINKS

Presentation by Alexander Khouri

Based on 'Striking a Balance Between Bufferbloat and TCP Queue Oscillation in Satellite Input Buffers', by Ulrich Speidel & Lei Quan

AGENDA:

Network Performance Metrics

- Satellite Data Links
- Transmission Control Protocol (TCP)
- Link Buffers
- Network Traffic Experiment

Types of Network Delays

Transmission Delay

 \rightarrow Time routers take to push bits into a link

Propagation Delay

 \rightarrow Time signals take to travel physical distance

Queueing Delay

 \rightarrow Time packets spend in link buffers

Bandwidth Delay Product (BDP)

- Defines the maximum amount of transmitted data that can exist inside a communication link
- Generally used for defining router buffer sizes

BDP = Bandwidth (bits/second) x Round-Trip Time (seconds)

Geostationary Earth Orbit (GEO) Satellites

- Altitude = \sim 36,000km
- Orbital Period = 1 day
- One satellite required for continuous link
- Large propagation delay

Medium Earth Orbit (MEO) Satellites

- Altitude = 2,000-36,000km
- Orbital Period = 2-24 hours
- Several satellites required for continuous link
- Medium propagation delay

Low Earth Orbit (LEO) Satellites

- Altitude = <2,000km
- Orbital Period = <2 hours
- Many satellites required for continuous link
- Low(?) propagation delay

Hubble Telescope

Transmission Control Protocol (TCP)

- Initiates connections via 3-way handshake
- Recipients acknowledge packets by sending 'ACKs'

 \rightarrow Lost packets are retransmitted

→ Many dropped packets = Network congestion

Sends groups of packets in 'windows'

 \rightarrow Window sizes are adjusted to prevent congestion

TCP Header

0	16				32
	Source Port			Destination Port	
0					32
	Sequence Number				
0					32
	Acknowledgement Number				
0		4 7	7 1	6	32
	Header Length	Unused	Flags	Window Size	
ō	16				32
	Checksum			Urgent Pointer	
0					32
l	Options Options				

Input/Output Buffers

Input/Output Buffers

- Output is buffered while sender waits for ACKs \rightarrow This causes transmission delays
- Input is buffered while receiver processes packets \rightarrow This causes queueing delays
 - \rightarrow Larger buffer = Longer queueing delays
 - \rightarrow Smaller buffer = Receiver drops more packets

= More propagation delays

Buffer Management Algorithms

• Early buffers used simple First-In First-Out (FIFO) algorithms

→ PROBLEM: Dense data channels occupy large buffer space, blocking smaller channels

→ SOLUTION: Randomly drop incoming packets with increasing probability as buffer fills i.e. 'Random Early Drop' (RED)

→ NEW PROBLEM: Many packets get dropped if buffers don't get emptied

Bufferbloat vs Queue Oscillation

Bufferbloat = Routers failing to clear input buffers

→ Causes many packets to be dropped, which creates more propagation delays

 \rightarrow Larger buffers take longer to clear

Queue Oscillation = Regular buffer clearing

 \rightarrow Still drops packets, but reduces queueing delays

 \rightarrow Smaller buffers are easier to clear

Large Buffers vs Small Buffers

Queue sojourn time for a simulated 16Mbps GEO link using a 2MB buffer, transferring 40MB of TCP data through 50 channels over a 60 second period.

Large Buffers vs Small Buffers

Queue sojourn time for a simulated 16Mbps GEO link using a 120kB buffer, transferring 40MB of TCP data through 50 channels over a 60 second period.

Many Channels vs Few Channels

Queue sojourn time for a simulated 64Mbps MEO link using a 400kB buffer, transferring 160MB of TCP data through 300 channels over a 60 second period.

Many Channels vs Few Channels

Queue sojourn time for a simulated 64Mbps MEO link using a 400kB buffer, transferring 160MB of TCP data through 100 channels over a 60 second period.

Conclusions

- Benefits of smaller buffers:
 - Buffers cleared more often
 - Shorter queueing delays
 - More consistent network performance
- Effects of more channels:
 - Buffers cleared less often
 - > More queueing delays

Questions?

References:

U. Speidel and L. Qian, "Striking a Balance between Bufferbloat and TCP Queue Oscillation in Satellite Input Buffers," *2018 IEEE Global Communications Conference (GLOBECOM)*, Abu Dhabi, United Arab Emirates, 2018, pp. 1-6, doi: 10.1109/GLOCOM.2018.8647662.

GeeksforGeeks, "Packet Switching and Delays in Computer Network," *GeeksforGeeks*, August 12, 2019. [Online]. Available: <u>https://www.geeksforgeeks.org/packet-switching-and-delays-in-computer-network</u>. [Accessed August 27, 2020].

K. Boyini, "Packet Switching and Delays in Computer Network," *Tutorials Point*, February 21, 2019. [Online]. Available: <u>https://www.tutorialspoint.com/bandwidth-delay-product</u>. [Accessed August 27, 2020].

H. Riebeek, "Catalog of Earth Satellite Orbits," *The Earth Observatory*, September 4, 2009. [Online]. Available: <u>https://earthobservatory.nasa.gov/features/OrbitsCatalog</u>. [Accessed August 27, 2020].

References:

K. Boyini, "Packet Switching and Delays in Computer Network," *Tutorials Point*, February 21, 2019. [Online]. Available:

https://www.tutorialspoint.com/data_communication_computer_network/transmission_control_protocol. [Accessed August 27, 2020].

Braden, et al., "RFC 2309 - Recommendations on Queue Management and Congestion Avoidance in the Internet," *Internet Engineering Task Force*, February, 1998. [Online]. Available: <u>https://tools.ietf.org/html/rfc2309</u>. [Accessed August 27, 2020].