Computing Education and Learning Technology

Research Group

SR AL a4 Dr Paul Denny

3 AUCKLAND Associate Professor
3 Te Whare W

Te Whare Winanga o Tamaki Makaurau School of Computer Science
NEW FEACANS p.denny@auckland.ac.nz

Overview

* What is Computing Education & Learning Technology research?
* Why is it an interesting area of research?

* A few examples
» student projects (including COMPSCI 747)
* leveraging existing expertise in Computer Science

 Overarching research questions

« Two examples
« Specific research questions

What is it?

* Distinct from “teaching”
 Teaching is helping others acquire knowledge and develop skills in a discipline
» Research is creating new knowledge and exploring new ideas

What is it?

* Distinct from “teaching”
 Teaching is helping others acquire knowledge and develop skills in a discipline
» Research is creating new knowledge and exploring new ideas

« Computing Education Research:

» the study of how people learn and teach computing
* the goal is to help students learn, and teachers teach, more effectively

L
D —— - e . int sum = 0;
1% i)
retrrstatemant) ¢ (assanStatement) Htatamans t o (forstatemaer) (EnCarchgtatemant) | (ontinuaStitament) | (breakStazamant)
(ivowsistemans) | (acnsistemend wmiesurenend A .) 1f(a::2*(a/2)) {
s | | /) | R Em e if (bl=2¢(b/2)) {
4 * . -
rasisDecmz) Ny 4 : sum = a+b;
* h FeiOrAnnatation)
qualfiednams)
' } else {
AN if (b==2x(b/2)) {
] S p— SR sum = a-+b:
o TypeArgumnis - . ’
™ =|.*-\F¢_ y

v e e T s /S return sum;
viteral) | Lisera Uitersl - et] | 1S

* Distinct from “teaching”
 Teaching is helping others acquire knowledge and develop skills in a discipline
» Research is creating new knowledge and exploring new ideas

« Computing Education Research:
* the study of how people learn and teach computing
* the goal is to help students learn, and teachers teach, more effectively

* Learning Technology Research:
» designing and evaluating tools for learning

» covers the broader use of technology in teaching, learning and education across
disciplines

Why research education?

 To have a positive impact in the world
» Better outcomes for learners

Why research education?

 To have a positive impact in the world
» Better outcomes for learners

* Practical application of technology
* A clear need and an enormous user base

Why research education?

 To have a positive impact in the world
» Better outcomes for learners

» Practical application of technology
* A clear need and an enormous user base
* Big business
 "Computational Thinking” is an essential 215t

century skill, yet there are few people who
can help others to develop those skills.

Constant need to train staff in technology
Increasing need for non-CS people to program

Increasing integration of programming skills into
school curriculum

Increasing number of companies involved in
technology to support education, and education
about CS.

b gl &

g ‘.rmf:‘é

Beehive.govt.nz
The official website of the New Zealand Government

30 OCTOBER 2018

International education contributes $5.1
billion to New Zealand economy

* HON CHRIS HIPKINS
r\ 4

A few student projects

 Researchers apply their expertise from many areas of CS

A few student projects

 Researchers apply their expertise from many areas of CS
» graph theory (e.g. bibliometric analysis - James)

A few student projects

 Researchers apply their expertise from many areas of CS
 graph theory (e.g. bibliometric analysis - James)
* program analysis
« static analysis (e.g. generating ASTs for visualising control flow - Lucy and Robert)
« dynamic analysis (e.g. classification of array access errors - Liam)

while (i < 10) {
if (shouldIncrement()) {
i++; Siong aigi=x% 10; g
} ' »

$x=10; ‘ .DDDD LOWMISS

} / é 0 1 2 3 4

e : HiGHMIsS

@ public boolean hasAdjacentDigits(long x))

@retum taise;

i< 10 shouldIncrement ()
l \ \ ipx.onmo-a-gnut..n-m-nm ¢ ‘. . LOWBOUNDS
o L)\ :
! / Wxn10ea git = 1 é DDDDD HIGHBOUNDS

‘__// &= 10; @retum true; » »

While loop If statement Expression

A few student projects

 Researchers apply their expertise from many areas of CS
 graph theory (e.g. bibliometric analysis - James)

* program analysis

« static analysis (e.g. generating ASTs for visualising control flow - Lucy and Robert)

« dynamic analysis (e.g. classification of array access errors - Liam)

» machine learning/Al (e.g. NLP for question answering - Bill)

Ste

0.8

1.0

1.1

1.2

%

= Question 2

Question 1 g;
. v (answer)
0 Step 2 f"g;
Option A
e Question 3
Option B A
B)
C)
Option C
P)V (answer)
Option D
Step 2

(1]
Model Ctl
“Question |——> § -‘:7ﬁi'
m
3
i
Tomion | & -l
. = — + 12
{ Ly |w he | Ai 2 | -
O
I - [‘ noe] -havel or |
ition embedding I

Feed Forward

AddB Norm -

Masked Muiti
Self-Attention

Transformer Encoder

g
18 = = | |
g B Ee] .
b il

target data (PeerWise) ‘

uiyos

plowis

A few student projects

 Researchers apply their expertise from many areas of CS
 graph theory (e.g. bibliometric analysis - James)
* program analysis
« static analysis (e.g. generating ASTs for visualising control flow - Lucy and Robert)
« dynamic analysis (e.g. classification of array access errors - Liam)

» machine learning/Al (e.g. NLP for question answering - Bill)
« game design (e.g. teaching version control, data structures — Kevin, Simon)

Copy from temp

Copies an element (Car) 10 a
[i

Oreum

Branches are useful for when you want to alter the

timeline of a universe without risking damage to the
master branch.

Copy Element
Copies an element (Car) from
a given index (parking space)
10 another index.

1 P index3
wrra) = aeravinl;

A few student projects

 Researchers apply their expertise from many areas of CS
 graph theory (e.g. bibliometric analysis - James)
* program analysis
« static analysis (e.g. generating ASTs for visualising control flow - Lucy and Robert)
« dynamic analysis (e.g. classification of array access errors - Liam)

» machine learning/Al (e.g. NLP for question answering - Bill)
« game design (e.g. teaching version control, data structures — Kevin, Simon)
» VR/AR (e.g. visualising object transformations for computer graphics - Thomas)

A few student projects

 Researchers apply their expertise from many areas of CS
 graph theory (e.g. bibliometric analysis - James)
* program analysis
« static analysis (e.g. generating ASTs for visualising control flow - Lucy and Robert)
« dynamic analysis (e.g. classification of array access errors - Liam)

» machine learning/Al (e.g. NLP for question answering - Bill)

« game design (e.g. teaching version control, data structures — Kevin, Simon)

* VR/AR (e.g. visualising object transformations for computer graphics - Thomas)
- software design (e.g. using metaphors for teaching design patterns - Zain)

This method should iterate through all the ShapeObservers
Toy Moulds in "_observers” and notify them of the bounce occurring. v ‘)
Iwant a This is just like how the news stand tells its subscribers —
t Toy Factory that a newspaper has arrived: Start 1 1 2 5 AM) @

car toy i

duck car rse | - = = L==_l

O e 2

| ‘/

)

A few student projects

 Researchers apply their expertise from many areas of CS
 graph theory (e.g. bibliometric analysis - James)
* program analysis
« static analysis (e.g. generating ASTs for visualising control flow - Lucy and Robert)
» dynamic analysis (e.g. classification of array access errors - Liam)

» machine learning/Al (e.g. NLP for question answering - Bill)

« game design (e.g. teaching version control, data structures — Kevin, Simon)

* VR/AR (e.g. visualising object transformations for computer graphics - Thomas)

» software design (e.g. using metaphors for teaching design patterns - Zain)

« programming (e.g. interactive tool for teaching debugging skills - Emma and Liz)
S|

Front Back <

& def front_back(string):

Can't swap characters if the string has less than tw

if len(string) < 1:

O 00 ~NN O W

return string

A few student projects

 Researchers apply their expertise from many areas of CS
 graph theory (e.g. bibliometric analysis - James)
* program analysis
« static analysis (e.g. generating ASTs for visualising control flow - Lucy and Robert)
» dynamic analysis (e.g. classification of array access errors - Liam)

» machine learning/Al (e.g. NLP for question answering - Bill)

« game design (e.g. teaching version control, data structures — Kevin, Simon)

* VR/AR (e.g. visualising object transformations for computer graphics - Thomas)

» software design (e.g. using metaphors for teaching design patterns - Zain)

« programming (e.g. interactive tool for teaching debugging skills - Emma and Liz)
« computer systems (e.g. compiler error messages - Dave)

if (a < 0) || (a > 100)

if (a<0) || (a > 100) = “

Syntax error on token "||", if expected
error = true; Y I P

1 error

COMPSCI 747

 Graduate course in Computing Education

A Miss is as Good as a Mile: Off-By-One Errors and Arrays in an
Introductory Programming Course

Liam Rigby Paul Denny Andrew Luxton-Reilly
The University of Auckland The Univerxity of Aunckland The University of Auckland
New 7 New Zealand New Zealand
Leig52 1 ghansc klanduniac ne paul@csanckland ac.nx aluxton -reill yehavckland ac nx

ABSTRACT

Loops and arrays am fundsmental 51 concepts, bt omes that
can be for novice peogramemerns In thes rescarch, we
inwestigate off by ove crron g e where ops performs

one loo few or ane too many deratians - in code using sn indexed

LowMiss
(it clement M mdes @ v missod)

o
P
in
L
of A Review of Research on Parsons Problems
-
sh Yuemeng Du Andrew Luxton-Reilly Paul Denny
e yius41@aucklanduni.ac nz andrew@es auckland ac.nz paub@es auck bind ac nz
o University of Auckland University of Auckland University of Auckland
o Auckland, New Zealand Auckland, New Zealand Auckland, New Zcaland
L
ABSTRACT [1] and the Exploring Computer Science Curriculum [17]
K Parsons problems are a type of programming exercise where sty €Ver. these are mainly informal programming courses that |

o dents rearrange jumbled code blocks of a solution program back
into its onginal form. 1 ix usually implemented as a complement or
1 alternative to traditional programming excrcises like code-tracing
B and code writing This paper revicws the existing hiterature on the
Parsans problem in introductory CS education. We find that the
flexible nature of the design of Parsons problems has led to many
wvariants, and these have been continuously refined 1o better address
student needs. However, the cffectivencss of Parsons problems, both
s a question type and as & learning tool in CS education, remains
uncertain due to a lack of replicated rescarch in the ficld.

KEYWORDS

Parsons problem, Parsons puzale, programming cxercise

ACM Reference Formal:

Yuemeng; D, Andrew Luxton-Reilly, and Paul Denmy. 2020. A Review of

md:u:?ml’knbk_. of the Twenty Second Aus-
Education Conference (ACE'20), February 3-7, 20,

»uu-.vr Asstralia. ACM, New York, NY. USA, 8 pages. hitps//dol.

org/ 10114573165 S3T31ET

=

RFridacsEas®e

22

1 INTRODUCTION

Introductory programming courses must necesarnly teach sudents

the syntax ufpnmmmmg mechanical leaming to a certain

extent. Al many

involve code writing, R:nvdﬂn-\- supgested that reliance an tra
; ises often d student

younger (high school) students, serving as preparation for |
university study.

At university kevel, block based programmuny exercises ar
frequently implemented Nevertheless, the Parsons problem. 2
and drop style. block-based program construction cxercis
been a notable and i prescnce in Sw
sity courses. Unlike traditional code- writing excrcises, st
are supplicd with code fragments that arc alrcady written, v
relieves a considerable amount of cognitive load Furthermon
sons s can be casily implemented in an online or m
environment, making it casicr for students to engage in learn
real-time.

A survey of existing literature shows that, while there
isting rescarch on the adoption of Passons problems, the n
are scattered and concern themselves with different aspects.

It aims to provide an overview of how the Parsons probler
cvolved over the yrars, both in terms of the question type
and how it is implemented The following research questior
in sections:
(1) Why are Parsons problems studied in CS education?
(2) What are the features of Parsons problems?
(3) How are Parsons problems used in CS education?

2 METHODOLOGY
We conducted a sy review of the literature using the |

and motivation [4], which directly influcnce student p
Furthcrmore, tasks such as code writing can often end up being.
challenging and time intensive to students in ways unintended by
the instructors. A potential solution to this is to provide a novel way
for students to learn to program, one that imposes less cognitive

Exte 3LETETI

lines proposed by [26). The main steps inchude the identific
of research questions, selection of primary studies, assessm
quality of the studies, data extraction and synthesis.

To sdentify prumary studics, we conducted a search of the

Mastery Learning in Computer Science Education

James Garner Paul Denny Andrew Luxton-Reilly
University of Auckland University of Auckland University of Auckland
New Zealand New Zealand New Zealand and Dep
jgars69@aucklanduni.ac.nz paul@cs.auckland.ac.nz andrew@cs.auckland.ac.nz
ABSTRACT of a student to grasp an early concept will be magnified in asse

Mastery learning is a pedagogical approach in which students must

mastery of the y assessed unit of material
before being permitted to progress to the next unit. Recent work
has suggested that mmu-ry Ieammg may provide a solution to the
divergent science
(CS) courses. While mastery lc-rnmg has slmwn benefits outside
of CS, it has received less attention in CS education, and there is
no existing overview of the approaches that have been used in
1l

of Infi ios, Uni

ments involving later concepts. This problem should not arise in |

A Review of Peer Code Review in Higher Education

THERESIA DEVI INDRIASARI, School of Computer Science, The University of Auckland, New Zealand
Atma Jaya Yogyakarta, Indonesia

ANDREW LUXTON-REILLY and PAUL DENNY, School of Computer Science, The University of
Auckland, New Zealand

mastery leaming approach, since mastery learning does not pen
students to attempt a later assessment without first mastering |
earlier content. Several of the papers included in this review ¢

the ‘Learning Edge Momentum' paper as motivation for adoptin
d

Peer review is the standard process within
employed in other settings, such as education and industry, for improving work quality and for generating
actionable feedback to content authors. For example, in the software industry peer review of program source

demia for

ing publication quality, but it is also widely

2

mastery learning approach.

peer code

is a key
context, alth

Despite the relevance of mastery learning to scier
education today, the literature on it is scarce, which influenced |

i Transitioning from Block-based to Text-based Programming Languages o
;‘_ 0
1 e
n
Luke Moors Andrew Luxton-Reilly Paul Denny e
C Depariment of Computer Science Depariment of Computer Science Depariment of Computer Science =8
% The University of Auckland The University of Auckland The University of Auckland I
Auckland, New Zealand Auckland, New Zealand Auckland, New Zealand i
F Imoo228@aucklanduni.ac.nz andrew@cs.auckland.ac.nz paul@cs.auckland.ac.nz a
5 [
n i
il d

it Abstract—Block-based programming environments are be-
¢ coming popular as y tools for teaching
A programming to children. These environments differ signifi-
cantly from their text-based counterparts and have proven to
1 be successful in motivating children and making it easy to
start programming. However, several studies have recognised
T drawhacks of these tools which could poltentially be detrimental
U when students transition to text-based languages. In this paper,
T the distinguishing features between block-based environments
uand text-hased | are and the effectl of
these features are lained. In ,_“I.Ie U ln
I text-based this paper
w nesses lo block-based prmﬂnmllmuddhruusnmﬂum
is for improvement.

€ lkylvwn's-k-l}.. ki2, block-based, introduclory program-
nm
a 1

. INTRODUCTION

noltis widely acknowledged that programming is difficult
ﬁlo learn [1]-]5]. Novice programmers have great difficulty
o in typical programming tasks such as predicting the output
»of a program, identifying the correct order of commands,
= or wriling a simple program (o solve a task [4]. Many of

A thaco tacke ans challsnoing 1o navicss ac thay ans measioed

ronment launched in 2007, there has been an increase from e
78,000 1o 174,000 monthly active users in the past two years c
alone [10]. This style of programming implements a block-

like structure where blocks of code fit together like jig-saw (i
picces. These blocks differ in shape and colour 1o provide ¢
cues about how instructions can be assembled and to differ-

entiate between concepts [5]. In addition, the environments

typically encourage novice programmers by allowing them
to create media-rich content in relation to their own interests. ©
Storytelling Alice, in particular, implements a Storytelling e
approach found to be appealing (o female students [11], [12].

On the other hand, App Inventor encourages novices using

a block-based style of programming to provide the ability o -
create mobile applications in a simplified manner [7]. Many |
of the environments which use block-based programming A
(e.g. Scraich, Alice, App Inventor) aim to lower the barmiers g
to programming, making it easier for beginners to start an
programming [13]. n

for detecting bugs and maintaining coding standards. In a
h peer code review offers polential benefits to both code reviewers
and code authors, individuals are typically less experienced, which presents a number of challenges. Some

Common Logic Errors Made By Novice Programmers

Paul Denny
University of Auckland
Auckland, New Zealand

Andrew Ettles Andrew Luxton-Reilly
University of Auckland University of Auckland
Auckland, New Zealand Auckland, New Zealand
aett0? iac.nz auckland.ac.nz
ABSTRACT
Errors in the logic of a progr referred t ti
errors) can be very frustrating for novice programmers to locate

and resolve. Developing a belter understanding of the kinds of

paul@cs.auckland.ac.nz

inputs. Ahmadzadeh et al. [1] state that such errors are §
when the intended meaning of the programmer's code i
sistent with the language. Debugging logic errors can
frustrating activity for programmers, as often ther is
on the Jocation. f the error. N

logic error that are most common bl ic for students, and
finding strategics far targeting them, may help to inform teaching
practice and reduce student frustration.

grammers may find it particularly difficult to detect logic
o their relative lack of debugging experience combined v

ble mi: ions in their [0

n this pap y

students, and we classify the

" errorsinto ic errors, mi of the problem.
and We find that

" ¥
are the most frequent source of Logic errors, and fead to the most
difficult exrors for students to resolve. We list the most commen
errors of this type as a starting point for designing specific teaching
interventions to address them.

; CCS CONCEPTS

+ Social and

topies — ¢

KEYWORDS
€51, logic errors, novice programmers

ACM Reference Format:

Andrew Fites, Andrew Luxton-Reilly. and Paul Denny. 2018, Common
Logic Errors In ACE 2018 20th
Compuing Education Conference, Jamuary 30 February 2, 2018, Brisbane,

OLD, Austratia. ACM, New Yoek, NY, USA, 7 pages. hitpe//doi org/10.1145/
3160459316049

1 INTRODUCTI ON
ng, student errors has

Much of the research related ln Hv: wbjm has rep d s
the benefits of such cnvi J moti- I
vation and improved grades [11], [14], [15], however other ."

studice have anoorsted notential drawhacks 1n hlack hacad

Empirical honi lassifyi
focused pr ly

perhaps because static analysis can casily be applicd to ilrgc data
sets [1]. In particular, recent work I.y Becker [3-5], Denny [7, 8],

Bosaie 1431 mmd Bomsbune 1147 aue

RREE s PR A OIS

In this paper we investigate the following two rescarch.

RO1 What are the most common logic errors students
RQZ Which logic errors are most problematic for st
identify and fix?

To identify student errors we analysed data taken fro
first-year university programming course. Our goal in p
the most common errors is to highlight some of the chall
students encounter when learning to program which m:
inform future teaching practice.

2 RELATED WORK
Hristova et al. [10] found improper casting, not storing
from a call to a non-veid method, and flow reaching 1
a non-void method were among the most commonly m
crrors in Java. This data was collected from a survey
professors and teaching assistants within Computer Scien
than through empirical analysis of code. MeCall and K3
in student code through 1 analys
of relying on compiler messages. Although they did not
detailed breakdown of the most common logic errors, 1
syntax errors were calegorised.

Altadmri and Brown [2] provided a comprehensive
analysis of the frequency and time-to-fix of different erro
including semantic errors for over 250,000 novice prog
students. They found that the average time students sp

Example

* Liam Rigby's paper
* COMPSCI747 project
» Australasian Computing Education Conference (ACE) 2020
« Dynamic analysis of large existing code dataset

A Miss is as Good as a Mile: Off-By-One Errors and Arrays in an
Introductory Programming Course

Liam Rigby Paul Denny Andrew Luxton-Reilly
The University of Auckland The University of Auckland The University of Auckland

New Zealand New Zealand New Zealand
Irig521@aucklanduniac.nz paul@cs.auckland.ac.nz aluxton-reilly@auckland.ac.nz

ABSTRACT

o LowMiss
Loops and arrays are fundamental CS1 concepts, but ones that

g 5 ; (first element, at index 0, 15 mussed)
can be problematic for novice programmers. In this rescarch, we

investigate off-by-one errors - logic errors where loops perform dor (4 17 1< %"“ Jthi i+4) {
one too few or onc too many itcrations — in code using an indexed . sum += array(1):

loop over an array. We classify off-by-one errors, and explore the

prevalence of cach type, by analyzing a large sct of code submissions HIGHMiss

from students in a first year programming course as they tackle a
sequence of exercises. We describe an approach to reliably identify
off-by-one errors through dynamic analysis, and find that off-by-
one errors are both common and persist across exercises. We also
show that students infrequently choosc to iterate over an array in
reverse, but when they do they more commonly encounter off-by-
one errors. We conclude that teaching material should explicitly
focus student attention on boundary cases, and should provide
more examples that iterate through arrays in reverse.

(last element, at index length-1, 1s missed)

for (i = 07 i < length - 1; i++4)
sum += arrayli];

LowBoUNDS
(mvahd clement, at mdex -/, 1s accessed)

for (1 = -1; 1 < length: i++) |
sum += array[i]:

* Liam Rigby's paper
* COMPSCI747 project
» Australasian Computing Education Conference (ACE) 2020
« Dynamic analysis of large existing code dataset

was reviewing recently...

[CPOIL AlTdyS dllu HUex1y propiciils, noung ol-vy-oIe errors dia 177

difficulties setting up the appropriate range. Rigby et al [25] examine 178
off-by-one-errors in which students make logic errors resulting in 179
loops performing too few or too many iterations, and find that ::1
such errors are both common and persist across multiple types of 182
exercises. These difficulties have led some computing education 183

. . . 184
recearchere ta aromne far the nee of ecallectinn ahiecte and their i

* Liam'’s paper Liam Rigby , paul Denny
* (5747 project . Re: First citation (maybe)

* Published in A(;E .2 0 You replied to this message on 28/04/2020 12:16 PM.
» Analysed an existir

was reviewing tl

S —— SO/1GUESS YOU CAN SAY

ifficulties setting [8 :

off-by-one-error: .. - &l '!' ‘t* ""'T‘ '.

loops performin & il ‘

such errors are b / {

exercises. These } R
),

recparchere tn a & :
I'M PRETTY FAMOUS'NOW

An exciting time

 Rapid growth in adoption of learning tools
* Vast amounts of data collected on how people learn

Anant Agarwal (MIT / EdX)

“Data collection for educational research is one of the key goals of EdX.... we
gather huge amounts of data.... all this rich data will be available to
researchers.... to understand how people really learn and we can help
synthesize a better educational experience”

Daphne Koller (Stanford / Coursera)

“Tremendous opportunities.... every click, every homework submission, every
forum post, from tens of thousands of students.... turn the study of human
learning from the hypothesis driven mode to the data driven mode”

Example: keystroke vs submission data

TH b B BE TH VB BE
Source | [Hisory | [@ B~ 8- Q@ HFBO S AU B Source | [History | [@ B B- ARSI BL F D AA e B
1 1
2 public class AdaLovelace { 2 public class Adalovelace {
3 3
4| E public static void main(String[] args) { 4|8 public static void main(String[] args) {
5 5
6 - } 6 - }
7 } 7 }
8 8
2500 T T 2500 2500 T
s S ‘ 8 TN
2 2000) . 2 2000 |-, - 2 2000 - -
£ o £ € \
N\
S . S [Ty ﬂJ 3
7] AN 7] H\\Am,__ %]
T 1500] B © 1500 - — ‘® 1500 —
£ _ ,J\\ = &
£ £ £
g ~ = =
o 1000 - M“—L B ‘o 1000 - d - @ 1000 |- -
Qo Q Q
c o c
g Y S 8
0 \ Rl R
S 500 - N - S 500 - - S 500 |- \ A i
© \ k=l L h=] g
w w 1 i}
Y
0 ! | | l l | \\ 0 I ! l L I ! l | 0 l | L | l ! L
0 300 600 900 1200 1500 1800 2100 2400 0 250 500 750 1000 1250 1500 1750 2000 0 300 600 900 1200 1500 1800 2100 2400
Event count Event count Event count

Courtesy: Juho Leinonen (University of Helsinki)

Computing Education Research

 Overarching research questions:
« How do people learn computing?
» How do teachers teach and assess computing?
* How can people learn computing more effectively?
« How can teachers teach computing more effectively?
* How can access to computing education be improved?
* How can computing education be delivered equitably to all?
* How can learning technologies teach computing?
« How does computing education affect people's lives?
What are the societal costs of computing illiteracy?
« What does it mean to know computing?
« What can be taught about computing to learners of different ages?

Two examples

* Two recent studies

» Feedback and learner behavior
» Example 1
» Computing education: Compiler error messages

* Example 2
* Learning technology: Influencing (positive) behaviours

Example 1: Compiler error messages

Error Message Readability and Novice Debugging Performance

Paul Denny

University of Auckland

Auckland, New Zealand

paul@cs.auckland.ac.nz
ABSTRACT
It is well known that programming error messages can be notori-
ously difficult for novices to understand, hampering progress and
leading to fnul.mhan ln response, researchers have explored vari-
ous for yet results from this
active strand of research are currently mixed. Direct comparisons of
results between studies is challenging as these typically investigate
different kinds of message enhancements and report results using
different metrics. In addition, many prior studics have involved
code writing tasks. In such cases, not all students encounter the
same errors and messages, and it is difficult to isolate the time spent
interpreting messages and resolving crrors from the time spent
writing code. In this rescarch, we explore the effects of present-
ing novices with rompller error rn:ssagcs deslgned using the most
recent collection of p more cas-
ily readable, short, positive messages containing resolution hints.
To accurately determine the time and cffort required to read and
respond to the messages, we utilise a debugging task where all stu-
dents are presented the same code and therefore encounter lhc same

such

James Prather
Abilene Christian University
Abilene, Texas, USA
Jjames.prather@acu.edu

Brett A. Becker
University College Dublin
Dublin, Ireland
brett.becker@ucd.ie

1 INTRODUCTION

One of the chall
is unds di

new to a language
d by the compiler or in-
terpreter. For students who are also new to programming, learning
the syntax of a language alongside the principles of programming
can be difficult, particularly when the messages they receive are
confusing [17, 46]. Many educators will be familiar with the reality
that certain error messages in the language they are teaching lead
to particularly cryptic error messages which can be frustrating for
students and hamper progress |5, 8).

In recent years there has been growing interest in understanding
how students respond to various crror messages and how those
messages relate to underlying crrors in code (7, 29, 37, 41, 44].
However, it is still widely accepted that for many languages, there
is much room for improvement in the uscfulness of error messages
- particularly when concerning novice users [36].

A 2019 ITiCSE Working Group conducted a large-scale review
of the rescarch on programming error messages (PEMs) [6]. This
report composed a list of design guidelines for improving text-based

faced by any progs
the error d

errors. We present results of a domised

(n > 700) which shows that, compared to sm\dmd error m:ssasrs
the messages we tested resulted in significantly shorter debugging
times and higher self-reported scores of message uscfulness for
students in the very carly stages of learning a new language.

CCS CONCEPTS

- Social and professional topics — CS1: Computing educa-
tion: Comp science - H com-
puting — Human computer interaction (HCI).
KEYWORDS

compiler error messages: CS1; debugging: error message enhance-
ment; novice p rs:p eror readabil-
ity

ACM Reference Format:

Paul Denny, James Prather, and Brett A. Becker. 2020. Error Message Read-
ability and Novice Debugging Performance. In Proceedings of the 2020 ACM
Conference on Innovation and Technology in Computer Sctence Education
(TICSE 20). June 15-19, 2020, Trondhetm, Norway. ACM, New York. NY.
USA, 7 pages. https:/idoiorg/10.1145/3341525 3387384

Permission to make digital or hard copies of all or part of this work for personal or

e s granted without foe provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full Gtation
cn the first page. Copyrights for components of this work owned by others than the
suthor(s) must be honored. Absm\cnm with mdﬁ is permitted. To copy otherwies nr

republish, to post specific per
andjor a fee. Request permissions from pmm.mmmg,

ITiCSE 20, June 15-19, 2020, Trondheim, Norway

© 2020 Copyright held by the Publication rights licensed &

ACM ISBN 978-1-4503-6874-2/20/06. .. $15.00
hitps://doiorg/10.1145/3341525.335T384

based on those proposed by various rescarchers over the
past 60 years. The guidelines were classified into ten categorics,
which included the following four: increase readability, reduce
cognitive load, usc a positive tone, and show solutions or hints.
The Working Group report concluded with a call for additional
rescarch to empirically validate the guidelines for producing uscful
error “Individual guidelines should be incd and then
robustly tested to determine their cffectiveness” [6, p. 204).

In this research we apply these guidelines to formulate new error
messages for a select set of errors. We then measure the effect that
these new messages have on students as they work through a simple
debugging task. In particular, we explore how students perceive
the uscfulness of the new messages and how the new messages
impact their debugging efforts. We answer the following research
questions with respect to the newly formulated error messages:

RQ1: Are the new error messages more readable. usin, s
ditional measures of readabill ylhnnrhz po
ing original compiler error messages?

RQ2: Do students read error messages and. if so, are
the new messages perceived as more uscful when debug-
ging code in a new language, compared to the messages
produced by the compiler?

RQ3: To what extent do the new messages impact de-
bugging performance, in terms of time and effort?

Denny, Prather & Becker (2020)

Example 1: Compi

ler error messages

Error Message Readability and Novice Debugging Performance

Paul Denny James Prather
Abilene Christian University
Abilene, Texas, USA Dublin, Ireland
Jjames.prather@acu.edu

University of Auckland

Auckland, New Zealand

paul@cs.auckland.ac.nz
ABSTRACT
It is well known that programming error messages can be notori-
ously difficult for novices to understand, hampering progress and
leading to frustration. In response, researchers have explored vari-
ous approaches for enhancing such messages, yet results from this
active strand of rescarch are currently mixed. Direct comparisons of
results between studies is challenging as these typically investigate
different kinds of message enhancements and report results using
different metrics. In addition, many prior studics have involved
code writing tasks. In such cases, not all students encounter the
same errors and messages, and it is difficult to isolate the time spent
interpreting messages and resolving crrors from the time spent
writing code. In this rescarch, we explore the effects of present-
ing novices with compiler error rn:ssagcs drsngned using the most
recent collection of published ly. more cas-
ily readable, short, pnslll\ © mrssascs (onlammg resolution hints.
To accurately determine the time and cffort required to read and

respond to the messages, we utilise a debugging task where all stu-
dentsace prescnted the same code and therefore encounter the same

Brett A. Becker
University College Dublin

brett.becker@ucd.ie

1 INTRODUCTION

One of the challenges faced by any p e new to a language
is und; ding the error P d by the compiler or in-
terpreter. For students who are also new to programming, learning
the syntax of a language alongside the principles of programming
can be difficult, particularly when the messages they receive are
confusing [17, 46]. Many educators will be familiar with the reality
that certain error messages in the language they are teaching lead
to particularly cryptic error messages which can be frustrating for
students and hamper progress |5, 8).

In recent years there has been growing interest in understanding
how students respond to various crror messages and how those
messages relate to underlying errors in code (7, 29, 37, 41, 44]
However, it is still widely accepted that for many languages, there
is much room for improvement in the uscfulness of error messages
- particularly when concerning novice users [36)

A 2019 ITiCSE Working Group conducted a large-scale review
of the rescarch on programming error messages (PEMs) [6]. This
report composed a list of design guidelines for improving text-based

errors. We present results of a d

(n > 700) which shows that, compared to tandard crror rn:ssasrs
the messages we tested resulted in significantly shorter debugging
times and higher self-reported scores of message uscfulness for
students in the very carly stages of learning a new language.

CCS CONCEPTS
« Social and professional topics — CS1: Computing educa-

tion: Comp science - H d com-
puting — Human computer interaction (HCI).

KEYWORDS

compiler error messages: CS1: debugging: error message enhance-
ment; novice sip error readabil-
ity

ACM Reference Format:

Paul Denny, James Prather, and Brett A. Becker. 2020. Error Message Read-
ability and Novice Debugging Performance. In Proceedings of the 2020 ACM
Conference on Innovation and Technology in Computer Sctence Education
ATICSE '20). June 15-19. 2020, Trondhetm, Norway. ACM, New York. NY,
USA, 7 pages. https:/idoiorg/10.1145/3341525 3387384

Permission to make digital or hard copies of all or part of this work for personal or
tase is granted without foe provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this potice and the full ctation

cn the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credst is permitted. To copy otherwies nr

republish, to post on servers o to reditribute to lists, requires prior specific per

and/or a fee. Request permissions from permissions(dacm o,

ITiCSE 20, June 15-19, 2020, Trondheim, Norway

© 2020 Copyright held by the own h Publication rights | d b

ACM ISBN 078-1-4503-6874-2/20/06. .. $15.00

hitpsc/idoiorg/10.1145/3M 15253387384

based on those proposed by various rescarchers over the
past 60 years. The guidelines were classified into ten categorics,
which included the following four: increase readability, reduce
cognitive load, usc a positive tone, and show solutions or hints.
The Working Group report concluded with a call for additional
rescarch to :mpmral.lg ¥ illdﬂlc the guidelines for producing useful
error d idelincs should be incd and then
robustly tested to determine their cffectiveness” [6, p. 204).

In this research we apply these guidelines to formulate new error
messages for a select set of errors. We then measure the effect that
these new messages have on students as they work through a simple
debugging task. In particular, we explore how students perceive
the uscfulness of the new messages and how the new messages
impact their debugging efforts. We answer the following rescarch
questions with respect to the newly formulated error messages:

ROQI: Are the new error messages more readable, using
dif | measures of readability. than the po
ing original compiler error messages?

RQ2: Do students read error messages and. if so, are
the new messages perceived as more uscful when debug-
ging code in a new language, compared to the messages
produced by the compiler?

RQ3: To what extent do the new messages impact de-
bugging performance, in terms of time and effort?

Denny, Prather & Becker (2020)

II. Background and Objectives

Manufacturer-supplied FoRTRAN compilers normally
provide rather efficient object code, provide flexible in-
teraction with the operating systems, and have many
sophisticated programming features. However, they are
inadequate for the needs presented in the area of finding
and correcting errors as quickly as possible. In many
instances, the description of an error condition lacks
resolution and offers the user little assistance in removing
the error other than indicating the statement in which the
error occurs. A more serious inadequacy is that many
error descriptions are given in terms not understandable
to a FORTRAN programmer.

DITRAN—a compiler emphasizing diagnostics
Moulton and Muller

Communications of the ACM

January 1967

Example 1: Compiler error messages

Error Message Readability and Novice Debugging Performance

Paul Denny James Prather
Abilene Christian University
Abilene, Texas, USA
Jjames.prather@acu.edu

University of Auckland

Auckland, New Zealand

paul@cs.auckland.ac.nz
ABSTRACT
It is well known that programming error messages can be notori-
ously difficult for novices to understand, hampering progress and
leading to frustration. In response, researchers have explored vari-
ous approaches for enhancing such messages, yet results from this
active strand of rescarch are currently mixed. Direct comparisons of
results between studies is challenging as these typically investigate
different kinds of message enhancements and report results using
different metrics. In addition, many prior studics have involved
code writing tasks. In such cases, not all students encounter the
same errors and messages, and it is difficult to isolate the time spent
interpreting messages and resolving crrors from the time spent
writing code. In this rescarch, we explore the effects of present-
ing novices with compiler error messages designed using the most
recent collection of published guidelines - sp ly. more cas-
ily readable, short, positive messages containing resolution hints.
To accurately determine the time and cffort required to read and
respond to the messages, we utilise a debugging task where all stu-
dents are presented the same code and therefore encounter the same

errors. We present results of a ised ¢

Brett A. Becker
University College Dublin
Dublin, Ireland
brett.becker@ucd.ie

1 INTRODUCTION

One of the challenges faced by any p
is und ding the error

new to a language
d by the compiler or in-
terpreter. For students who are also new to programming, learning
the syntax of a language alongside the principles of programming
can be difficult, particularly when the messages they receive are
confusing [17, 46]. Many educators will be familiar with the reality
that certain error messages in the language they are teaching lead
to particularly cryptic error messages which can be frustrating for
students and hamper progress |5, 8).

In recent years there has been growing interest in understanding
how students respond to various crror messages and how those
messages relate to underlying crrors in code (7, 29, 37, 41, 44]
However, it is still widely accepted that for many languages, there
is much room for improvement in the uscfulness of error messages
- particularly when concerning novice users [36]

A 2019 ITiCSE Working Group conducted a large-scale review
of the rescarch on programming error messages (PEMs) [6]. This
report composed a list of design guidelines for improving text-based

&
4

P
{n> 700) which shows that, compared to standard error messages.
the messages we tested resulted in significantly shorter debugging
times and higher self-reported scores of message uscfulness for
students in the very carly stages of learning a new language.

CCS CONCEPTS
« Social and professional topics — CS1: Computing educa-

tion: Comp science - H com-
puting — Human computer interaction (HCI).

KEYWORDS

compiler error messages: CS1: debugging: error message enhance-
ment; novice p rs: p error readabil-
ity

ACM Reference Format:

Paul Denny, James Prather, and Brett A. Becker. 2020. Error Message Read-
ability and Novice Debugging Performance. In Proceedings of the 2020 ACM
Conference on Innovation and Technology in Computer Sctence Education
(TICSE 20). June 15-19, 2020, Trondhetm, Norway. ACM, New York. NY.
USA, 7 pages. https:/idoiorg/10.1145/3341525 3387384

Permission to make digital or hard copies of all or part of this work for personal or
ase is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

o6 the first page. Copyights for components of this work owned by others than the

author(s) must be honared. Abstracting with credit is permitted. To copy stherwics ~r

republish, to post on servers or to redistribute to lists, requires prior specific per

and/or a fee. Request permissions from permissions(@acm.org.

ITiCSE 20, June 15-19, 2020, Trondheim, Norway

© 2020 Copyright held by the hoe(s). Publication rights licensed t

ACM ISBN 973- 1-4503-6874-2/20/06. .. $15.00

hitpsc/idoiorg/10.1145/3M 15253387384

based on those proposed by various rescarchers over the
past 60 years. The guidelines were classified into ten categorics,
which included the following four: increase readability, reduce
cognitive load, usc a positive tone, and show solutions or hints.
The Working Group report concluded with a call for additional
rescarch to empirically validate the guidelines for producing uscful
error “Individual guidelines should be incd and then
robustly tested to determine their cffectiveness” [6, p. 204).

In this research we apply these guidelines to formulate new error
messages for a select set of errors. We then measure the effect that
these new messages have on students as they work through a simple
debugging task. In particular, we explore how students perceive
the uscfulness of the new messages and how the new messages
impact their debugging efforts. We answer the following rescarch
questions with respect to the newly formulated error messages:

RQI: Are the new error messages more readable. using
dif | measures of readability. than the spond-
ing original compiler error messages?

RQ2: Do students read error messages and. if so, are
the new messages perceived as more uscful when debug-
ging code in a new language, compared to the messages
produced by the compiler?

RQ3: To what extent do the new messages impact de-
bugging performance, in terms of time and effort?

Denny, Prather & Becker (2020)

Yet, ask any experienced programmer about the qual-
ity of error messages in their programming environ-
ments, and you will often get an embarrassed laugh.
In every environment, a mature programmer can usu-
ally point to at least a handful of favourite bad error
responses. When they find out that the same envi-
ronment is being used by novices, their laugh often
hardens.

Marceau, Fisler & Krishnamurthi (2011)

Example 1: Compiler error messages

Error Message Readability and Novice Debugging Performance

Paul Denny

University of Auckland

Auckland, New Zealand

paul@cs.auckland.ac.nz
ABSTRACT
It is well known that programming error messages can be notori-
ously difficult for novices to understand, hampering progress and
leading to frustration. In response, researchers have explored vari-
ous approaches for enhancing such messages, yet results from this
active strand of rescarch are currently mixed. Direct comparisons of
results between studies is challenging as these typically investigate
different kinds of message enhancements and report results using
different metrics. In addition, many prior studics have involved
code writing tasks. In such cases, not all students encounter the
same errors and messages, and it is difficult to isolate the time spent
interpreting messages and resolving crrors from the time spent
writing code. In this rescarch, we explore the effects of present-
ing novices with rompller error rn:ssagcs desngned using the most
recent collection of p more cas-
ily readable, short, positive messages containing resolution hints.
To accurately determine the time and cffort required to read and

respond to the messages, we utilise a debugging task where all stu-
dents are presented the same code and therefore cncounter the same

James Prather
Abilene Christian University
Abilene, Texas, USA
Jjames.prather@acu.edu

Brett A. Becker
University College Dublin
Dublin, Ireland
brett.becker@ucd.ie

1 INTRODUCTION

One of the chall faced by any progs
is und ding the error d

new to a language
d by the compiler or in-
terpreter. For students who are also new to programming, learning
the syntax of a language alongside the principles of programming
can be difficult, particularly when the messages they receive are
confusing [17, 46]. Many educators will be familiar with the reality
that certain error messages in the language they are teaching lead
to particularly cryptic error messages which can be frustrating for
students and hamper progress |5, 8).

In recent years there has been growing interest in understanding
how students respond to various crror messages and how those
messages relate to underlying crrors in code (7, 29, 37, 41, 44]
However, it is still widely accepted that for many languages, there
is much room for improvement in the uscfulness of error messages
- particularly when concerning novice users [36].

A 2019 ITiCSE Working Group conducted a large-scale review
of the rescarch on programming error messages (PEMs) [6]. This
report composed a list of design guidelines for improving text-based

errors. We present results of a d

(n > 700) which shows that, compared to tandard crror m:ssasrs
the messages we tested resulted in significantly shorter debugging
times and higher self-reported scores of message uscfulness for
students in the very carly stages of learning a new language.

CCS CONCEPTS
- Social and professional topics — CS1: Computing educa-

tion: Comp science - H com-
puting — Human computer interaction (HCI).
KEYWORDS

compiler error messages; CS1; debugging: error message enhance-
ment; novice p rs:p eror readabil-
ity

ACM Reference Format:

Paul Denny, James Prather, and Brett A. Becker. 2020. Error Message Read-
ability and Novice Debugging Performance. In Proceedings of the 2020 ACM
Conference on Innovation and Technology in Computer Sctence Education
(TICSE 20). June 15-19, 2020, Trondhetm, Norway. ACM, New York. NY.
USA, 7 pages. https:/idoiorg/10.1145/3341525 3387384

Permission to make digital or hard copies of all or part of this work for personal or
ase is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

o6 the first page. Copyights for components of this work owned by others than the

author(s) must be honared. Abstracting with credit is permitted. To copy stherwics ~r

republish, to post on servers or to redistribute to lists, uqum prior specific per

and/or a fee. Request permissions from permissions@acm.

ITiCSE 20, June 15-19, 2020, Trondheim, Norway

© 2020 Copyright held by the Publication rights licensed &

ACM ISBN 978 1-4503-6874-2/20/06.

hitps/idoiorg/10.1145/314 15253357384

based on those proposed by various rescarchers over the
past 60 years. The guidelines were classified into ten categorics,
which included the following four: increase readability, reduce
cognitive load, usc a positive tone, and show solutions or hints.
The Working Group report concluded with a call for additional
rescarch to empirically validate the guidelines for producing uscful
error “Individual guidelines should be incd and then
robustly tested to determine their cffectiveness” [6, p. 204).

In this research we apply these guidelines to formulate new error
messages for a select set of errors. We then measure the effect that
these new messages have on students as they work through a simple
debugging task. In particular, we explore how students perceive
the uscfulness of the new messages and how the new messages
impact their debugging efforts. We answer the following research
questions with respect to the newly formulated error messages:

RQ1: Are the new error messages more readable. usin, s
dif | measures of readability. than the po
ing original compiler error messages?

RQ2: Do students read error messages and. if so, are
the new messages perceived as more uscful when debug-
ging code in a new language, compared to the messages
produced by the compiler?

RQ3: To what extent do the new messages impact de-
bugging performance, in terms of time and effort?

Denny, Prather & Becker (2020)

User's Manual
Language Compatibility
Language Extensions
Ce+ Staws
Clang Development
Get Staried
Get Involved
Open Projects
Clang Internals
Hacking on Clang
Clang Tools
Automatic Bug-Finding
writing Clang Tools

Expressive Diagnostics

In addition to being fast and functional, we aim to make Clang extremely user friendly. As far as a command-line compiler goes, this basically boils down to making the diagnostics (error and warning messages)
generated by the compiler be as useful as possible. There are several ways that we do this. This section talks about the experience provided by the command line compiler, contrasting Clang output to GEC 4.9's
outpuL in some cases.

Column Numbers and Caret Diagnostics

First, all diagnostics produced by clang include full column number infarmation. The clang command-line compiler driver uses this information to print “point diagnostics", IDEs can use the information to display in-
line error markup.) This is nice because it makes it very easy to understand exactly what is wrong in a particular piece of code.

The point (the graen "A" character) exactly shows whare the problem is, even inside of a string. This makes it really easy to jump to the problem and helps when multiple instances of the same character oecur on a
line. (we'll rewisit this more in following examples.)

-fsyntax-only format
format-strings.c:31:13: warning
princf(“3.0d")

specified field precision is missing a matching 'int' argusent

Note that modern versions of GCC have followed Clang’s lead, and are now able to give a column for a diagnostic, and include a snippet of source text in the result. However, Clang's column number is much more
aceurate, peinting at the problematic format specifier, rather than the) character the parser had reached when the problem was detected. Also, Clang's diagnostic is colored by default, making it easier to distinguish
from nearby text.

Range Highlighting for Related Text

Clang captures and accurately tracks range information for expressions, statements, and other constructs in your program and uses this to make diagnestics highlight related information. In the following somewhat
nonsensical example you can see that you don't even need to see the original source code to understand what is wrong based on the Clang error. Because clang prints a point, you know exactly which plus it is
complaining about. The range information highlights the left and right side of the plus which makes it immediately obvious what the compiler is talking about. Range information s very useful for cases involving
pracedence issues and many other cases.

4.9 -Isyntax-o

) s
nds to binary + (have 'int' and ‘scruct A')
X + 40) + Someh) / 42 + SomeA.X : Someh.X);

o n

syntax-only t.c
invalid operands to binary expression ('int' and 'struct A')
+ funcly 7 ((ScmeA.X + 40) + SomeA) / 42 + SomeA.X : SomeA.X);

Precision in Wording

A detail is that we have tried really hard to make the diagnostics that come out of clang contain exactly the pertinent information about what is wrong and why. In the example above, we tell you what the inferred
types are for the left and right hand sides, and we don't repeat what is obvious from the point (e.g., that this is a “binary +

Many other examples abound. In the following example, not only do we tell you that there is a problem with the * and point to it, we say exactly why and tell you what the type is (in case it is a complicated
subexpression, such as a call to an overloaded function). This sort of attention to detail makes it much easier to understand and fix problems quickly.

& cleng -fsyntex-only t.c v

https://clang.llvm.org/diagnostics.html

Example 1: Compiler error messages

1 #include <studio.h>

2

3 #define CENTIMETERS_TO FEET 0.0328

4 #define CENTIMETERS_TO INCH ©.3937

5

6 int main(void)

7

8 // Variables for converting metric to imperial

9 int centimeters feet;

10 double inches;
11
12 // Read value into the variable centimeters
13 scanf("%d", centimeters);
14

15 feet = centimeters * CENTIMETERS TO FEET;

16 inches = (centimeters - feet / CENTIMETERS TO FEET) * CENTIMETERS TO INCH;
17 printf("%d centimeters is %d feet and %.2f inches\n", centimeters, feet, inches);
18

19 return 0;

N
S
—

O oYWV B W N =

[T S T T T e
S WO NV H WNES®

Example 1: Compiler error messages

#include <studio.h>

| 1:10: fatal error: studio.h:
#tdefine CENTIMETERS_TO FEET 0.0328 . .
#tdefine CENTIMETERS TO INCH 0.3937 No such file or directory

int main(void)

// Variables for converting metric to imperial
int centimeters feet;
double inches;

// Read value into the variable centimeters
scanf("%d", centimeters);

feet = centimeters * CENTIMETERS TO FEET;
inches = (centimeters - feet / CENTIMETERS TO FEET) * CENTIMETERS TO INCH;

printf("%d centimeters is %d feet and %.2f inches\n", centimeters, feet, inches);

return 0;

O oYWV B W N =

[T S T T T e
S WO NV H WNES®

Example 1: Compiler error messages

#include <studio.h>

| 1:10: fatal error: studio.h:
#tdefine CENTIMETERS_TO FEET 0.0328 . .
#tdefine CENTIMETERS TO INCH 0.3937 No such file or directory

int main(void)

// Variables for converting metric to imperial
int centimeters feet;
double inches;

// Read value into the variable centimeters
scanf("%d", centimeters);

feet = centimeters * CENTIMETERS TO FEET;
inches = (centimeters - feet / CENTIMETERS TO FEET) * CENTIMETERS TO INCH;

printf("%d centimeters is %d feet and %.2f inches\n", centimeters, feet, inches);

return 0;

O oYWV B W N =

[T S T T T e
S WO NV H WNES®

Example 1: Compiler error messages

#include <studio.h>

9:21: error: expected ‘=, ’,
', ‘asm’ or '_attribute '
before ‘feet'.

#define CENTIMETERS_TO_FEET 0.0328
#define CENTIMETERS_TO_INCH 0.3937

14
T

int main(void)

// Variables for converting metric to imperial
int centimeters feet;
double inches;

// Read value into the variable centimeters
scanf("%d", centimeters);

feet = centimeters * CENTIMETERS TO FEET;
inches = (centimeters - feet / CENTIMETERS TO FEET) * CENTIMETERS TO INCH;

printf("%d centimeters is %d feet and %.2f inches\n", centimeters, feet, inches);

return 0;

O oYWV B W N =

[T S T T T e
S WO NV H WNES®

Example 1: Compiler error messages

#include <studio.h>

9:21: error: expected ‘=, ’,
', ‘asm’ or '_attribute '
before ‘feet'.

#define CENTIMETERS_TO_FEET 0.0328
#define CENTIMETERS_TO_INCH 0.3937

14
T

int main(void)

// Variables for converting metric to imperial
int centimeters feet;
double inches;

// Read value into the variable centimeters
scanf("%d", centimeters);

feet = centimeters * CENTIMETERS TO FEET;
inches = (centimeters - feet / CENTIMETERS TO FEET) * CENTIMETERS TO INCH;

printf("%d centimeters is %d feet and %.2f inches\n", centimeters, feet, inches);

return 0;

Example 1: Compiler error messages

1 #include <studio.h>

2 _ 13:5: error: expected

3 #define CENTIMETERS TO FEET 0.0328 . oo

4 #define CENTIMETERS TO INCH 0.3937 declaration specifiers before
5 ‘scanf’

6 int main(void)

7

8 // Variables for converting metric to imperial

9 int centimeters feet;

10 double inches;
11
12 // Read value into the variable centimeters
13 scanf("%d", centimeters);
14

15 feet = centimeters * CENTIMETERS TO FEET;

16 inches = (centimeters - feet / CENTIMETERS TO FEET) * CENTIMETERS TO INCH;

17 printf("%d centimeters is %d feet and %.2f inches\n", centimeters, feet, inches);
18

19 return 0;

N
S
—

Example 1: Compiler error messages

1 #include <studio.h>

2 _ 13:5: error: expected

3 #define CENTIMETERS TO FEET 0.0328 . oo

4 #define CENTIMETERS TO INCH 0.3937 declaration specifiers before
5 ‘scanf’

6 int main(void)

7

8 // Variables for converting metric to imperial

9 int centimeters feet;

10 double inches;
11
12 // Read value into the variable centimeters
13 scanf("%d", centimeters);
14

15 feet = centimeters * CENTIMETERS TO FEET;

16 inches = (centimeters - feet / CENTIMETERS TO FEET) * CENTIMETERS TO INCH;

17 printf("%d centimeters is %d feet and %.2f inches\n", centimeters, feet, inches);
18

19 return 0;

N
S
—

O oYWV B W N =

[T S T T T e
S WO NV H WNES®

Example 1: Compiler error messages

#include <studio.h>

#define CENTIMETERS_TO_FEET 0.0328
#define CENTIMETERS_TO_INCH 0.3937

int main(void)
// Variables for converting metric to imperial
int centimeters feet;

double inches;

// Read value into the variable centimeters
scanf("%d", centimeters);

feet = centimeters * CENTIMETERS_TO FEET;

13:13: error: format '%d’
expects argument of type
‘int *', but argument 2 has
type ‘int’.

inches = (centimeters - feet / CENTIMETERS TO FEET) * CENTIMETERS TO INCH;
printf("%d centimeters is %d feet and %.2f inches\n", centimeters, feet, inches);

return 0;

O oYWV B W N =

[T S T T T e
S WO NV H WNES®

Example 1: Compiler error messages

#include <studio.h>

#define CENTIMETERS_TO_FEET 0.0328
#define CENTIMETERS_TO_INCH 0.3937

int main(void)
// Variables for converting metric to imperial
int centimeters feet;

double inches;

// Read value into the variable centimeters

scanf("%d", centimeters);

feet = centimeters * CENTIMETERS_TO FEET;

13:13: error: format '%d’
expects argument of type
‘int *', but argument 2 has
type ‘int’.

inches = (centimeters - feet / CENTIMETERS TO FEET) * CENTIMETERS TO INCH;
printf("%d centimeters is %d feet and %.2f inches\n", centimeters, feet, inches);

return 0;

O oYWV B W N =

[T S T T T e
S WO NV H WNES®

Example 1: Compiler error messages

#include <studio.h> Could we provide more

#define CENTIMETERS TO _FEET 0.0328 useful error messages?
#define CENTIMETERS_TO INCH @.3937
What sort of difference
would that make?

int main(void)

// Variables for converting metric to imperial
int centimeters feet;
double inches;

// Read value into the variable centimeters
scanf("%d", centimeters);

feet = centimeters * CENTIMETERS TO FEET;
inches = (centimeters - feet / CENTIMETERS TO FEET) * CENTIMETERS TO INCH;

printf("%d centimeters is %d feet and %.2f inches\n", centimeters, feet, inches);

return 0;

Example 1: Compiler error messages

NEW OLD

Consecutive Could we provide more
submissions useful error messages?

What sort of difference
would that make?

Uk 1L

LT T .1 o] ey

o

T Wb e e

L

u
W T T T T -r-| ._-_- -

=

u

re

11¢
15
19

= OLD

10
10

Percentage of students

| | | | | | | |
0 500 1500 0 500 1500

2 (8 o e — — o — t—— t——

123 47?2P Time (secs) Time (secs)

Example 2: Influencing (positive) behaviours

CHI 2018, April 21-26, 2018, Montréal, QC, Canada

‘CHI 2018 Honourable Mention

Empirical Support for a Causal Relationship Between
Gamification and Learning Outcomes

Paul Denny
University of Auckland
Auckland, New Zealand
paul @cs.auckland.ac.nz

Fiona McDonald,
Ruth Empson, Philip Kelly
University of Otago
Dunedin, New Zealand

Andrew Petersen
University of Toronto
Mississauga, Canada

andrew.pelersen @ utoronlo.ca

{fiona.mcdonald, ruth.empson,
philip.kelly) @otago.ac.nz

ABSTRACT

Preparing for exams is an important yel stressful lime for

many students. Self-testing is known to be an effective prepa-

lents lack motivation to engage
Adding game Wa

platfnnn supporting self-testing may increase and,

This raises the question, “Can gamification positively impact
student behavior and learning outcomes””

In a comprehensive review of the lilerature, Hamari et al.
report that three particular elements: points, leaderboards and
badges are the most commonly used in empirical studies of

by extension, exam performance. We conducl a randomized
controlled experiment (x=701) comparing the effect of two
game elements — a points system and a badge system — used
individually and in combination.

We find that the badge system elicits significantly higher levels
of voluntary self-testing activity and this effect is parti

[28]. Their review concluded that most published
gamlﬁcalmn studies reported some pmmve effects, but they

ified a number of method jons thal may
have contributed to varying results. “These limitations included
small \amplc sizes, lack of control groups and very short

pronounced amongst a relatively small cohort. Imp Y,

A fourth limitation was that multiple
game were often d in combination, but
nol ivid , making il impossible (0 blish whether

had effects.

this increased activity translates to a
in exam scores. Our dala supporls a ul.l.\al I.’lel!i)llbhl‘p be-
tween pami and learning by self-
testing behavior. This provides empirical support for Landers’
theory of gamified learning when the gamified activity is con-
ducted prior to measuring learning outcomes.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous; K.3.0 Computers and Education: General

Author Keywords.
gamification; points; badges; self-testing; PeerWise

INTRODUCTION

A growing number of online platforms are incorporating game-
like elements (o molivale users and generale higher levels of
activity. Commonly referred to as “gamification,” this ap-
proach employs elements that are typically seen in games
in non-game contexts [18]. Educational tools have followed
this trend, with many including features such as points [10],
leaderboards [4], levels [43] and virtual achievements [15].
Permission to make digital o hard copies of all or past of this work for personal or

classroom use is granted withoul fee provided that copies are nol made of distributed
for prolit of commcrcral advantage and thal copecs bear this notice and the full ataton

repablish, o past on scrvers of o fedistnbutc 0 ists, requircs prior specic permassion
and/or 2 fee. Req

In this work we investigate two of the most common gamifica-
tion elements, points and badges, as used in an online learning
tool. Our conlext is a large firsl-year anatomy | and physiol-
ogy course (701 participants), where we student
engagement with the tool over an entire 15 week semester
and relate engagement to subsequent exam performance. We
examine the efTects of the game clements both individually
and in combination, relative (o a control group.

We explore two related research questions. Our primary ques-
tion tests the hypothesis that gamifying an online study ol
will have a causal effect on subsequent exam performance.
Landers’ theory of gamified leaming provides strong theoreli-

cal support for this hypothesis [34]. Our secondary research
question tests the hypothesis that a combination of game ele-
ments will have a greater effect on student behavior than either
element used on its own. We measure the individual effects of
our implemented points and badge systems, and we determine
if their simultaneous use is beneficial in our context.

BACKGROUND
ion is an i cation area for
gamification [2, 33, 51]. Tlm rm been dnven hy the potential

for gamification to address challenges around student moti-
vation and to positively impact learning [8, m] ‘This latter

is of in conlexts.
The n,]almnshlp between gamification and learning oulcomes
may be mediated by behaviors. such as time-on-task. that

Denny, McDonaId Empson, Kelly & Petersen (2018)

Example 2: Influencing (positive) behaviours

CHI 2018, April 21-26, 2018, Montréal, QC, Canada

‘CHI 2018 Honourable Mention

Empirical Support for a Causal Relationship Between
Gamification and Learning Outcomes

Paul Denny Fiona McDonald,
University of Auckland Ruth Empson, Philip Kelly
Auckland, New Zealand University of Otago
paul @cs.auckland.ac.nz Dunedin, New Zealand

{fiona.mcdonald, ruth.empson,
philip.kelly) @otago.ac.nz

Andrew Petersen
University of Toronto
Mississauga, Canada

andrew.pelersen@uloronto.ca

ABSTRACT

Preparing for exams is an important yel stressful lime for
many students. Self-testing is known to be an effective prepa-
ration strategy, yet some students lack motivation to engage
or persist in sell-fesling activities. Adding game elements (o a
platform supporting self-testing may increase engagement and,
by extension, exam performance. We conducl a randomized
controlled experiment (»=701) comparing the effect of two
game elements — a points system and a badge system — used
individually and in combination.

We find that the badge system elicits significantly hi ,her levels

This raises the question, “Can gamification positively impact
student behavior and learning outcomes””
In a comprehensive review of the lilerature, Hamari et al.
report that three particular elements: points, leaderboards and
badges are the most commonly used in empirical studies of
gamification [28]. Their review concluded that most published
gamlﬁcaunn studies reported some pnmwe effects, but they
1 a number of methodological limitations that may
have contributed to varying results. These limitations included
small \amplc sizes, lack of control groups and very short

of voluntary self-testing activity and this effect is p
pronounced amongst a relatively small cohort. lmpurl.mlly,
this increased activity translates to a

P A fourth limitation was that multiple
gam were often d in combination, but
not mdmdud]ly mklng it impossible (o establish whether

effects.

in exam scores. Our dala supporls a Ldl.L\dl rLlulmm.hrp be-
tween pami and learning by self-
testing behavior. This provides empirical support for Landers’
theory of gamified learning when the gamified activity is con-
ducted prior to measuring learning outcomes.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous; K.3.0 Computers and Education: General

Author Keywords
gamification; points; badges; self-testing; PeerWise

INTRODUCTION

A growing number of online platforms are incorporating game-
like elements (o molivale users and generale higher levels of
activity. Commonly referred to as “gamification,” this ap-
proach employs elements that are typically seen in games
in non-game contexts [18]. Educational tools have followed
this trend, with many including features such as points [10],
leaderboards [4], levels [43] and virtual achievements [15].
Permssion 1o make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided thal copies are ol made of distribaled

for profit or commercial advantage and thal copics bear this notice and the full Gitation

on the first page. Copyrights for components of this work owned by others than the

‘author(s) must be honored. Abstracting with credil is permiticd. To copy otherwise, of

rmmm 10 post 00 servers of 10 redistribute 1o lists, mwpﬁm specilic permission

In this work we investigate two of the most common gamifica-
tion elements, points and badges, as used in an online learning
tool. Our conlext is a large firsl-year anatomy | and physiol-
ogy course (701 participants), where we i gale student
engagement with the tool over an entire 15 week semester
and relate engagement to subsequent exam performance. We
examine the efTects of the game clements both individually
and in combination, relative (o a control group.

We explore two related research questions. Our primary ques-
tion tests the hypothesis that gamifying an online study ol
will have a causal effect on subsequent exam performance.
Landers’ theory of gamified leaming provides strong theoreli-
cal support for this hypothesis [34]. Our secondary research
question tests the hypothesis that a combination of game ele-
ments will have a greater effect on student behavior than either
element used on its own. We measure the individual effects of
our implemented points and badge systems, and we determine
ir their simultaneous use is beneficial in our context.

BACKGROUND
ion is an i application area for
gamification [2, 33, 51]. 11nc rm been driven by the potential

for gamification to address challenges around student moti-
vation and to positively impact learning [8, 36]. This latter
outcome is of particular importance in educational contexts.
The i between gamification and learning ¢

may be mediated by behaviors. such as time-on-task. that

Denny, McDonaId Empson, Kelly & Petersen (2018)

the
social dilemma

You're probably a kick-ass developer... but are you a secure
g developer? Try our gamified challenges, climb the leaderboard,
and win a FREE T-shirt! (securecodewarrior.com)

promoted by SecCodeWarrior
™ promoted save give award report

Example 2: Influencing (positive) behaviours

* Or, avoiding (negative) behaviours

Paper Session: CS1 Metacognitive CompkEd *19, May 17-19, 2019, Chengdu, Sichuan, China

Can Mobile Gaming Psychology Be Used to Improve Time
Management on Programming Assignments?

Michael S. Irwin and Stephen H. Edwards
Department of Computer Science
Virginia Tech
Blacksburg, VA, USA
mikesir@vt.edu, edwards@cs.vt.edu

Submission Energy Submission Energy Submission Energy
& |)92 & |)e:20 & | 919

Figure 1: Submission energy bar, showing countdown
and the animated fading of the next available unit being
regenerated.

I[rwin & Edwards (2019)

Example 2: Influencing (positive) behaviours

& TripCollective FAQs: x %
The Prog ral I I | I le &> C 0o @ i@ TripAdvisor LLC (US) | https v tripadvisor.ca/TripCollectiveFAQ B - @ || Q search LN @ =

@0 advisor Hotels Vacation Rentals Restaurants Thingstodo Flights

How do | receive points?

Ewvery time you contribute to TripAdvisar, you receive
TripCollective points. Here's a list of what you can
contribute, and how much it's worth.

@r Review 100 points

TripCollective FAQS:

Q Photo 30 points
The Basics

m Video 30 points What is TripCollective?
TripCollective is our enhanced contributor programme that recognises you each time you add to TripAdvisor.

) Think of it as your travel community's way of saying thanks for helping us collectively travel better.
D Forum Post 20 points

How do | become involved?

@ Rating 5 points L
t's easy aovhady who has contributed anvthing to TrinAduisor be it 2 review photo forim oact ating o

Example 2: Influencing (positive) behaviours

-

The Programme

How do | recei\?v
Ewvery time you

1 Do points have monetary value?

@ =1 TripCollective points do not have monetary

value and cannot be redeemed for anything.

Video \
TripCollective is our enhanced contributor programme that recognises you each time you add to TripAdvisor.

m Fon] m Post 20 . t Think of it as your travel community's way of saying thanks for helping us collectively travel better.
points

How do | become involved?

Rating 5 points

e ease e aodunl sl hes contpinle d b L el bl e et it

\ /

Example 2: Influencing (positive) behaviours

“Empirical research on the effectiveness of
incorporating game elements in learning
environments is still scarce”

Dicheva, Dichev, Agre, Angelova. 2015. "Gamification in Education: A Systematic Mapping Study", Journal of Educational Technology &
Society, Vol. 18, No. 3 (July 2015), pp. 75-88

Example 2: Influencing (positive) behaviours

6 SOCIETY FOR THE TEACHING
Topical Article % OF PSYCHOLOGY

Teaching of Psychology
2019, Vol. 46(2) 121-126

Generation and Retrieval Practice Effects © The Authort) 2019

Article reuse guidelines:
sagepub.com/journals-permissions

in the Classroom Using PeerWise DO 10.117/0098628319834174

journals.sagepub.com/home/top

®SAGE

Matthew R. Kelley', Elizabeth K. Chapman-Orr?,
Susanna Calkins®, and Robert). Lemke*

Abstract

The present study explored the generation and retrieval practice effects within a college classroom using a free, online tool called
PeerWise (PW). PW allows students to create their own multiple-choice questions, share them with peers, and answer the
shared questions written by their peers. Forty students from two sections of an upper level cognitive psychology course authored
and answered multiple-choice questions as part of a semester-long assignment. Analyses showed reliable generation and retrieval
practice effects following PW usage, along with a significant improvement in exam performance.

Keywords
generation effect, retrieval practice, PeerWise

y

PeerWise*
Ask | Share | Learn @

Welcome to PeerWise

To bog i, select your school | mstitution from the st below

PeerWise supports students in the creation, shafing, svaluation and discussion of assessment questions.

Free and easy to
Studants uie Poos use
cruie o axp

Kelley, Chapman-Orr, Calkins, Lemke. Generation and Retrieval Practice Effects in the Classroom Using PeerWise,
Teaching of Psychology, March 1, 2019.

Practice questions

Answer and
discuss
questions

Create
questions with
solutions

The “generation” effect The “testing” effect
[Slamecka & Graf, 1978] [Karpicke & Blunt, 20n]

Example 2: Influencing (positive) behaviours

Desired behavior Example reward

Rate questions early and fairly Reputation score (rating component)
Answer questions correctly Answer score
Spaced practice sessions Commitment badge

Create good questions Good question author badge

Points Badges
Question Reputation score t Question
generation 903 ‘ generation
Questioning: 65
Answering: 321 Good question author
Rating: 59
Self-testing Answer score @ Self-testing
Einstein

23 badges

Example 2: Influencing (positive) behaviours

Home | Main menu | Home | Main menu
__ Reputation score
Your questions ﬁ Congratulations - you've earned a new badge! }3 View 903

Questiening: 65

You have created 5 questions e wering: [

ST T T e e e e oo Rating: 59
-- Your questions
Answered questions You have created 5§ questions Answer score

1872

view » | You have answered 207 questions

__ Answered questions
Unanswered questions You have answered 207 questions

view » | There are 148 questions for you to answer

Unanswered questions

There are 146 questions for you to answer
Provide feedback ﬁ i /

View points View badges Provide feedback

control vs. game

Denny, McDonald, Empson, Kelly, Petersen. 2018. Empirical Support for a Causal Relationship Between Gamification and Learning
Outcomes. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI '18). ACM, New York, NY, USA

Example 2: Influencing (positive) behaviours

where I had to gain at least one follower! This was really
motivating, and made me think more carefully and
creatively when writing a question.

“Personally I tried really hard to get the ‘Leader’ badge,

“I didn't think I was ‘badge’ type of person, but I did enjoy
getting badges (I was the first one to get the ‘obsessed
badge’ - yay!). It did help motivate me to do extra and in
doing so, I believe I have learnt more effectively.”

Example 2: Influencing (positive) behaviours

Game elements caused:
* twice as many students to create questions (6.7% vs. 11.5%)

* nearly 40% increase in answering activity

37% increase in median number of answers

(p =.016)

25

] mean
E ®m control | 62.3
300 1 & - B game
3 X mean o
i Z — median g‘) 0
= 200 : 2
3 g _ |
7] o -~
= a.
< 100
X 764 w —
X 60.8 —_
36.5 ’
0 J I | " R
. I T T T T |
Grou,
control ™ game 0 20 40 60 80 100

Exam score

4.5% increase in mean exam score
(p =.038)

* The goal of Computing Education research is to help students learn
computer science more effectively

* The goal of Learning Technology research is the same, but applies more
broadly across disciplines

 These are interesting areas of research, to which a range of computer
science skills can be applied, and with the potential of large impact

 Our School’s graduate course is COMPSCI 747!

