# A First Look at Deep Learning Apps on Smartphones

Presented by James

Deep Learning Apps

Who is using deep learning?



# Types of deep learning apps

- Image recognition: Facebook, Google photos
- Video recognition: TikTok
- **Text analysis:** Google translate
- Voice analysis: Siri
- Recommendation engine:

Google / YouTube Ads

# Background

#### The Dawn - 2017

Most major venders launched their DL frameworks for smartphones.

- Google: TensorFlow Lite (Nov. 2017)
- Facebook: Caffe2 (Apr. 2017)
- Apple: Core ML (Jun. 2017)
- Tencent: Ncnn (Jul. 2017)
- Baidu: MDL (Sep. 2017) [1]

#### Same Goal:

Executing the DL inference task **solely** on smartphones.

# Technical terms

#### DL models / frameworks

#### **DL** models:

Comprise neuron layers in different types.

Convolutional Neural Network (CNN)

Recurrent neural network (RNN)

#### **DL frameworks:**

DL frameworks produce DL models and execute the models over input data

Think it as a template for developing DL apps.

# Research motivation

# Deep learning on smartphones is relatively new, what is the progress now?

Current Situation of smartphone apps market

# How to bridge the gap between research and development?

Need some tools to analyse the deep learning usage in mobile apps.

# Research questions

#### **Key Questions**

- The characteristics of apps that have adopted Deep learning
- 2. The **roles** of deep learning in those apps
- 3. Current **types** of DL frameworks adopted in apps

# Research method

#### Scope:

Android apps (88% of market share in 2018)

#### Data:

Apps on Google play store (APK and reviews) 16,500 apps in total Two datasets at June and September 2018

#### **Tools:**

Developed an analysing tool (DL Sniffer)
Manual inspection

#### Workflow

Searches for specific strings or class/method names e.g. TensorFlow always have "TF\_AllocateTensor" in its rodata section.

Extracts DL models from those DL apps
Researchers filter false positive

through reverse engineering



Figure 1: The overall workflow of our analyzing tool.

### Characteristics of DL Apps

- More downloads
- More reviews
- More centred in rating
- Larger app size



# Findings

DL is gaining popularity on smartphones

Big companies own more DL apps





Figure 5: The number of check-in and check-out DL apps.

## Roles of DL

- Image
- Text
- Audio
- Other

Becoming the core function

| usage      | detailed usage            | as core feature |  |
|------------|---------------------------|-----------------|--|
|            | photo beauty: 97          | 94 (96.9%)      |  |
|            | face detection: 52        | 44 (84.6%)      |  |
|            | augmented reality: 19     | 5 (26.3%)       |  |
| image: 149 | face identification: 8    | 7 (87.5%)       |  |
|            | image classification: 11  | 6 (54.5%)       |  |
|            | object recognition: 10    | 9 (90%)         |  |
|            | text recognition:11       | 4 (36.3%)       |  |
|            | word&emoji prediction: 15 | 15 (100%)       |  |
|            | auto-correct: 10          | 10 (100%)       |  |
| text:26    | translation: 7            | 3 (42.8%)       |  |
|            | text classification: 4    | 2 (50%)         |  |
|            | smart reply: 2            | 0 (0%)          |  |
| audio: 24  | speech recognition: 18    | 7 (38.9%)       |  |
|            | sound recognition: 8      | 8 (100%)        |  |
|            | recommendation: 11        | 2 (18.1%)       |  |
|            | movement tracking: 9      | 4 (44.4%)       |  |
| other: 19  | simulation: 4             | 4 (100%)        |  |
|            | abnormal detection: 4     | 4 (100%)        |  |
|            | video segment: 2          | 1 (50%)         |  |
|            | action detection: 2       | 0 (0%)          |  |
|            | total: 211                | 171 (81.0%)     |  |

## Popular frameworks

- TensorFlow (51)
- TFLite (31)
- Ncnn (28)
- Caffe (26)
- Parrots (22)
- Caffe2 (12)

DL framework is gaining traction Mobile DL ecosystem is forming

| Framework           | Owner              | Supported Mobile Platform   Mobile API |           | Is Open-<br>source |
|---------------------|--------------------|----------------------------------------|-----------|--------------------|
| TensorFlow [36]     | Google             | Android CPU, iOS CPU                   | Java, C++ | ✓                  |
| TF Lite [37]        | Google             | Android CPU, iOS CPU                   | Java, C++ | ✓                  |
| Caffe [65]          | Berkeley           | Android CPU, iOS CPU                   | C++       | 1                  |
| Caffe2 [9]          | Facebook           | Android CPU, iOS CPU                   | C++       | ✓                  |
| MxNet [46]          | Apache Incubator   | Android CPU, iOS CPU                   | C++       | 1                  |
| DeepLearning4J [13] | Skymind            | Android CPU                            | Java      | <b>✓</b>           |
| ncnn [35]           | Tencent            | Android CPU, iOS CPU                   | C++       | ✓                  |
| OpenCV [26]         | OpenCV Team        | Android CPU, iOS CPU                   | C++       | ✓                  |
| FeatherCNN [16]     | Tencent            | Android CPU, iOS CPU                   | C++       | ✓                  |
| PaddlePaddle [24]   | Baidu              | Android CPU, iOS CPU & GPU             | C++       | ✓                  |
| xNN [40]            | Alibaba            | Android CPU, iOS CPU                   | unknown   | X                  |
| superid [34]        | SuperID            | Android CPU, iOS CPU                   | unknown   | X                  |
| Parrots [30]        | SenseTime          | Android CPU, iOS CPU                   | unknown   | X                  |
| MACE [23]           | XiaoMi             | Android CPU, GPU, DSP                  | C++       | ✓                  |
| SNPE [31]           | Qualcomm           | Qualcomm CPU, GPU, DSP                 | Java, C++ | X                  |
| CNNDroid [70]       | Oskouei et al.     | Android CPU & GPU                      | Java      | ✓                  |
| CoreML [12]         | Apple              | iOS CPU, GPU                           | Swift, OC | х                  |
| Chainer [10]        | Preferred Networks | /                                      | /         | <b>\</b>           |
| CNTK [22]           | Microsoft          | /                                      | /         | ✓                  |
| Torch [39]          | Facebook           | /                                      | /         | ✓                  |
| PyTorch [29]        | Facebook           | /                                      | /         | ✓                  |

- Model/Layer types
- Resource Footprint
- Optimizations
- Security

CNN: 87.7%

RNN: 7.8%

Unknown: 4.5%

| Layer   | % of   | # in each  | Layer   | % of   | # in each |
|---------|--------|------------|---------|--------|-----------|
| type    | models | model      | type    | models | model     |
| conv    | 87.7   | 5 / 14.8   | relu    | 51.0   | 6 / 16.3  |
| pooling | 76.5   | 2 / 2.8    | split   | 46.9   | 1 / 7.5   |
| softmax | 69.1   | 1 / 1.1    | prelu   | 32.1   | 4 / 4.6   |
| fc      | 60.5   | 3 / 5.6    | reshape | 28.4   | 2 / 24.1  |
| add     | 56.8   | 9.5 / 23.8 | dropout | 21.0   | 1 / 1.0   |

Convolution (conv) is dominant, a core layer of CNN models

- Model/Layer types
- Resource Footprint
- Optimizations
- Security

#### **Model Size**



#### **Memory Cost**



DL models are very lightweight running such models are inexpensive

- Model/Layer types
- Resource Footprint
- Optimizations
- Security

#### Quantization

Reduce the number of bits

**Sparsity** [2]

Reduce parameters

Table 4: Optimizations applied on DL models.

|        | 1-bit Quan. | 8-bit Quan. | 16-bit Quan. | Sparsity    |
|--------|-------------|-------------|--------------|-------------|
| TF     | unsupported | 4.78%       | 0.00%        | 0.00%       |
| TFLite | unsupported | 66.67%      | unsupported  | unsupported |
| Caffe  | unsupported | 0.00%       | unsupported  | unsupported |
| Caffe2 | unsupported | 0.00%       | unsupported  | unsupported |
| ncnn   | unsupported | 0.00%       | unsupported  | unsupported |
| Total  | 0.00%       | 6.32%       | 0.00%        | 0.00%       |

Lack of DL optimizations

- Model/Layer types
- Resource Footprint
- Optimizations
- Security

Obfuscation 47/120(39.2%)
Shallow approach
Remove any meaningful text
Encryption 23/120(19.2%)
Better approach
Hide model structures. Decrypt at runtime

#### **Findings:**

Only **few frameworks** support obfuscation Ncnn/Mace covert model to binaries or C++ codes

No framework provides supports in model encryption

# Overall findings

- DL is gaining popularity on smartphones
- DL is becoming the core function of mobile apps
- DL framework is gaining traction
- DL models right now are very lightweight
- Well-known DL optimizations are missing in current apps
- Security issue is not handled in current apps, most DL framework doesn't support Obfuscation Encryption

Analysing tool only detects 16 DL frameworks

Limitations

Small sample size

Only analysed on Android platform

 They have developed a new analysing tool to bridge the gap between research and practice.

### Conclusions

 The paper revealed the current situation and the trend regarding DL apps in the real market.

 They pointed out that security and optimisations could be the major issue for current DL apps.

# References

[1] M. Xu, J. Liu, Y. Liu, F.X. Lin, Y. Liu and X. Liu, "A First Look at Deep Learning Apps on Smartphones," in Proc. of the ACM World Wide Web Conference, 2019, pp. 2125-2136, doi: 10.1145/3308558.3313591.

[2] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning structured sparsity in deep neural networks. In Advances in Neural Information Processing Systems. 2074–2082.