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Convolutional Neural Network (CNN)

- Feedforward process for recognition
- Backward path for training
- Composed of two components:

- A feature extractor

- A classifier

- Composed of multiple computation layers
[1.2]



Computation Of A Convolutional Layer

Graph of a convolutional layer

Pseudo code

for(row=0; row<R; row++) {
for(col=0; col<C; col++) {
for(to=0; to<M; to++) {

B
for(ti=0; ti<N; ti++) {

K
weights  Input feature maps Output feature maps for (i=0; i<K; i+4) {
for(j=0; j<K; j++) {
L: output_-fm[to][row][col] +=
weights[to][ti][i][]j]*
input_fm [ ti ][S*row+i][S*col+j];

SRS EE
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CNN Applications

- Image Processing
- Video Surveillance
- Mobile Robot Vision

- Natural Language Processing

Fast growth of modern technology based on deep learning

algorithms has generated new research & implementationsm.,z’\g]



CNN Applications

- For any CNN algorithm implementation, there are a lot of
potential solutions that result in a vast design space for

exploration.
- There is up to a 90% performance difference between two

different solutions with the same logic resource utilisation

An efficient method is of top priority for exploration of FPGA

based CNN design space.
[1]



Field-Programmable Gate Arrays (FPGA)

- General purpose processors are not efficient enough for
CNN implementations.

- Integrated circuit with the following advantages
- Good performance
- High energy efficiency

- Capability of reconfiguration
[1,2]



Problem!

Although current FPGA accelerators have demonstrated
better performance over generic processors, the accelerator
design space has not been explored well enough - there are
more efficient solutions that have yet to be discovered!



Introduction Summary

- What is your topic?

- Where does it fit in the Computer Science discipline?

- What drives the development of the topic (or what are
iIndustry’s needs), what is its background?

- What distinguishes the topic from associated topics?



The Roofline Model

- Relates system performance to off-chip memory traffic
and the peak performance provided by the hardware
platform.
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Exploring Accelerator Designs

Overview of our accelerator structure

) (] = i,

On-chip memory :
1

bufferl ! buffer2
Off-chip Bus 0

External Memory
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Exploring Accelerator Designs

Computation Optimisation Memory Access Optimisation
- Loop Unrolling - Local Memory Promotion
- Loop Pipelining - Loop Transformations for
- Tile Size Selection Data Reuse

- CTC Raitio.

[1]



Design Space Exploration
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Implementation Details
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Timing graph

- On-chip buffers overlap data transfer time with
computation
- Used to increase the bandwidth utilization
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Evaluation

- Accelerator design implemented with Vivado HLS, on a
VC707 board in C with a working frequency of 100MHz.

- The software implementation uses a Intel XEON CPU E5-
2430 (@2.20GHz) with a 15MB cache.

- The results are very successful!

[1]



Comparison to previous implementations

ICCD2013 ASAP2009 FPL2009 (6] FPL2009 (6] PACT2010 ISCA2010 [3] | Our Impl.

[12] [14] 2]
Precision fixed point 16bits fixed 48bits fixed 48bits fixed fixed point 48bits fixed 32bits float
Frequency 150 MHz 115 MHz 125 MHz 125 MHz 125 MHz 200 MHz 100 MHz
FPGA chip | Virtex6 Virtex5 Spartan-3A Virtex4 SX35 | Virtexd Virtex5 Virtex7

VLX240T LX330T DSP3400 SX240T SX240T VX485T
FPGA ca- | 37,680 slices | 51.840 slices | 23,872 slices | 15,360 slices | 37,440 slices | 37,440 slices | 75,900  slices
pacity 768 DSP 192 DSP 126 DSP 192 DSP 1056 DSP 1056 DSP 2800 DSP
LUT type 6-input LUT | 6-input LUT | 4-input LUT | 4-input LUT | 6-input LUT [ 6-input LUT | 6-input LUT
CNN Size 2.74 GMAC 0.53 GMAC 0.26 GMAC 0.26 GMAC 0.53 GMAC 0.26 GMAC 1.33 GFLOP
Per 8.5 GMACS 3.37 GMACS | 2.6 GMACS 2.6 GMACS 3.5 GMACS 8 GMACS 61.62

erformance GFLOPS

17 GOPS 6.74 GOPS 5.25 GOPS 5.25 GOPS 7.0 GOPS 16 GOPS 61.62 GOPS
Performance| 4.5E-04 1.3E-04 2.2E-04 3.42E-04 1.9E-04 4.3E-04 8.12E-04
Density GOPs/Slice GOPs/Slice GOPs/Slice GOPs/Slice GOPs/Slice GOPs/Slice GOPS/Slice

[1]




Comparisons to CPU

float CPU 2.20GHz (ms) FPGA
32 bit 1thd -O3 | 16thd -O3 | (ms) | GFLOPS
layer 1 98.18 19.36 7.67 27.50
layer 2 94.66 27.00 .35 83.79
layer 3 77.38 24.30 3.79 78.81
layer 4 65.58 18.64 2.88 77.94
layer 5 40.70 14.18 1.93 77.61
Total 376.50 103.48 21.61 -
Overall
GFLOPS 3.54 12.87 61.62
Speedup 1.00x 3.64x 17.42x

Performance Comparison

Power Consumption and Energy

Intel Xeon 2.20GHz

1 thread -O3 | 16 threads -03 | FPGA

Power (Watt) 95.00 95.00 18.61
Comparison 5.1x 5.1x 1x
Energy (J) 35.77 9.83 0.40
Comparison 89.4x 24.6x Ix

[1]



Pros and Cons

Other application accelerators do not balance the physical
limitations between bandwidth and computational power.
This solution is balanced.

The implemented CNN accelerator achieves a
performance of 61.62 GFLOPS - the highest performance

among existing accelerators.
[1]



Conclusion

- The paper describes a “roofline-model-based method for
convolutional neural network FPGA acceleration”.

- Through optimising, modeling using the roofline model,
finding the best layer/cross layer design and then
through actual implementation.

- A unique implementation that sheds light into the design

space, further solutions can build on this implementation.
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