Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural Networks C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao and J. Cong.

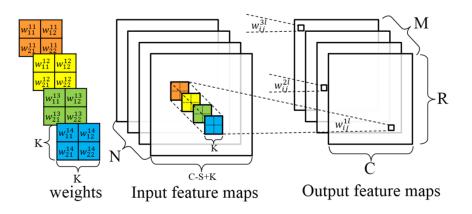
Presented by Maya Gibson

Convolutional Neural Network (CNN)

- Feedforward process for recognition
- Backward path for training
- Composed of two components:
 - A feature extractor
 - A classifier
- Composed of multiple computation layers

Computation Of A Convolutional Layer

Graph of a convolutional layer



Pseudo code

CNN Applications

- Image Processing
- Video Surveillance
- Mobile Robot Vision
- Natural Language Processing

Fast growth of modern technology based on deep learning algorithms has generated new research & implementations_[1;2,3]

CNN Applications

- For any CNN algorithm implementation, there are a lot of potential solutions that result in a vast design space for exploration.
- There is up to a 90% performance difference between two different solutions with the same logic resource utilisation

An efficient method is of top priority for exploration of FPGA based CNN design space.

Field-Programmable Gate Arrays (FPGA)

- General purpose processors are not efficient enough for CNN implementations.
- Integrated circuit with the following advantages
 - Good performance
 - High energy efficiency
 - Capability of reconfiguration

Problem!

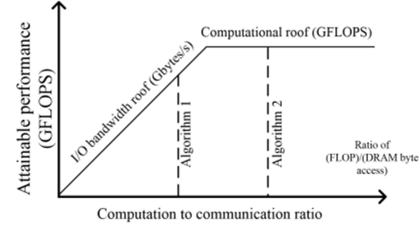
Although current FPGA accelerators have demonstrated better performance over generic processors, the accelerator design space has not been explored well enough - there are more efficient solutions that have yet to be discovered!

Introduction Summary

- What is your topic?
- Where does it fit in the Computer Science discipline?
- What drives the development of the topic (or what are industry's needs), what is its background?
- What distinguishes the topic from associated topics?

The Roofline Model

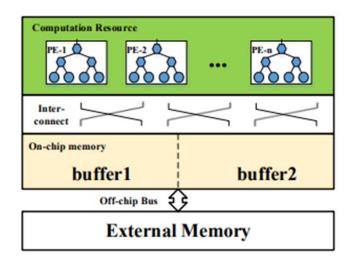
- Relates system performance to off-chip memory traffic and the peak performance provided by the hardware platform.



[1]

Exploring Accelerator Designs

Overview of our accelerator structure



Exploring Accelerator Designs

Computation Optimisation

- Loop Unrolling
- Loop Pipelining
- Tile Size Selection

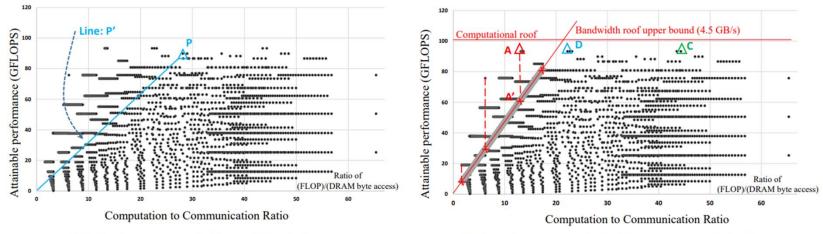
Memory Access Optimisation

- Local Memory Promotion
- Loop Transformations for

Data Reuse

- CTC Ratio.

Design Space Exploration



(a) Design space of all possible designs

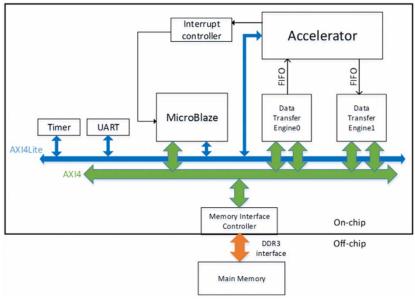
(b) Design space of platform-supported designs

All possible designs

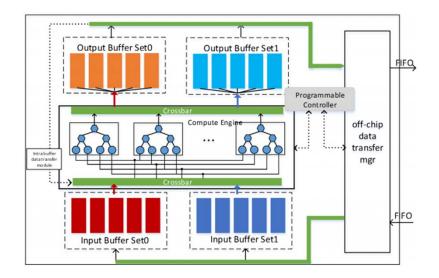
Platform-supported designs

[1]

Implementation Details



Implementation Overview



Proposed Accelerator

[1]

Timing graph

- On-chip buffers overlap data transfer time with computation
- Used to increase the bandwidth utilization

[N/Tn] phases				l			
Compute with	Compute with	Compute with	Compute with	Compute with	Compute with	Compute with	Compute with
input buff 0 output buff 0	input buff 1 output buff 0	input buff 0 output buff 0	input buff 1 output buff 0	input buff 0 output buff	1 input buff 1 output buff 1	input buff 0 output buff 1	input buff 1 output buff 1
load input buff 1	load input buff 0	load input buff 1	load input buff 0	load input buff 1	load input buff 0	load input buff 1	load input buff 0
store output buff 1			store output buff 0				

Evaluation

- Accelerator design implemented with Vivado HLS, on a VC707 board in C with a working frequency of 100MHz.
- The software implementation uses a Intel XEON CPU E5-2430 (@2.20GHz) with a 15MB cache.
- The results are very successful!

Comparison to previous implementations

	ICCD2013	ASAP2009	FPL2009 [6]	FPL2009 [6]	PACT2010	ISCA2010 [3]	Our Impl.
	[12]	[14]			[2]		
Precision	fixed point	16bits fixed	48bits fixed	48bits fixed	fixed point	48bits fixed	32bits float
Frequency	150 MHz	115 MHz	125 MHz	125 MHz	125 MHz	200 MHz	100 MHz
FPGA chip	Virtex6	Virtex5	Spartan-3A	Virtex4 SX35	Virtex5	Virtex5	Virtex7
	VLX240T	LX330T	DSP3400		SX240T	SX240T	VX485T
FPGA ca-	37,680 slices	51,840 slices	23,872 slices	15,360 slices	37,440 slices	37,440 slices	75,900 slices
pacity	768 DSP	192 DSP	126 DSP	192 DSP	1056 DSP	1056 DSP	2800 DSP
LUT type	6-input LUT	6-input LUT	4-input LUT	4-input LUT	6-input LUT	6-input LUT	6-input LUT
CNN Size	2.74 GMAC	0.53 GMAC	0.26 GMAC	0.26 GMAC	0.53 GMAC	0.26 GMAC	1.33 GFLOP
Performance	8.5 GMACS	3.37 GMACS	2.6 GMACS	2.6 GMACS	3.5 GMACS	8 GMACS	61.62
renormance							GFLOPS
	17 GOPS	6.74 GOPS	5.25 GOPS	5.25 GOPS	7.0 GOPS	16 GOPS	61.62 GOPS
Performance	4.5E-04	1.3E-04	2.2E-04	3.42E-04	1.9E-04	4.3E-04	8.12E-04
Density	GOPs/Slice						

Comparisons to CPU

float	CPU 2.20)GHz (ms)	FPGA		
32 bit	1thd -O3	16thd -O3	(ms)	GFLOPS	
layer 1	98.18	19.36	7.67	27.50	
layer 2	94.66	27.00	5.35	83.79	
layer 3	77.38	24.30	3.79	78.81	
layer 4	65.58	18.64	2.88	77.94	
layer 5	40.70	14.18	1.93	77.61	
Total	376.50	103.48	21.61	-	
Overall GFLOPS	3.54	12.87	61.62		
Speedup	1.00x	3.64x	17.42x		

Power Consumption and Energy

	Intel Xec		
	1 thread -O3	16 threads -O3	FPGA
Power (Watt)	95.00	95.00	18.61
Comparison	5.1x	5.1x	1x
Energy (J)	35.77	9.83	0.40
Comparison	89.4x	24.6x	1x

Performance Comparison

Pros and Cons

- Other application accelerators do not balance the physical limitations between bandwidth and computational power.
 This solution is balanced.
- The implemented CNN accelerator achieves a performance of 61.62 GFLOPS - the highest performance among existing accelerators.

Conclusion

- The paper describes a "roofline-model-based method for convolutional neural network FPGA acceleration".
 - Through optimising, modeling using the roofline model, finding the best layer/cross layer design and then through actual implementation.
- A unique implementation that sheds light into the design space, further solutions can build on this implementation.

References

C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao and J. Cong, "Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural Networks," in Proc. of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA '15), Association for Computing Machinery, New York, NY, USA, 2015, pp. 161–170, doi: 10.1145/2684746.2689060.

W. Rawat and Z. Wang, "Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review", Neural Computation, vol. 29, no. 9, pp. 2352-2449, 2017. Available: 10.1162/neco_a_00990.

References

C. Farabet, C. Poulet, J. Y. Han and Y. LeCun, "CNP: An FPGA-based processor for Convolutional Networks," 2009 International Conference on Field Programmable Logic and Applications, Prague, 2009, pp. 32-37, doi: 10.1109/FPL.2009.5272559.